- ベストアンサー
ベクトル解析(極座標系でのrot)
極座標で∇×Aの公式を証明したいのですが途中の計算で行き詰っています。計算の方法を教えてください。 省略のためちょっと記号を設定させてもらいます。 基底ベクトルe_r,e_θ,e_φをi,j,k、∂/∂r,∂/∂θ,∂/∂φ,を∂r,∂θ,∂φと書かせてもらいます。 ∇=i ∂r + j (1/r)∂θ + k (1/rsinθ)∂φ A=Ar i + Aθ j + Aφ K という設定で∇×Aを計算しようとしています。 まず∇×(Ar i) + ∇×(Ar j) + ∇×(Ar k)とばらして項ごとに計算しようとしています。 ∇×(Ar i)=(∇Ar)×i + Ar(∇×i) となると公式にあったのですが、Ar(∇×i)の部分をどう計算したらいいのか分かりません。 Ar(∇×i)の部分の計算の仕方を教えてください。それ以前に間違いがあるようでしたらそこを指摘していただけるとありがたいです。よろしくお願いします。
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
その他の回答 (1)
- endlessriver
- ベストアンサー率31% (218/696)
回答No.1
お礼
∇=i ∂r + j (1/r)∂θ + k (1/rsinθ)∂φ についてなんですが、 i=(sinθcosφ, sinθsinφ, cosθ) j=(cosθcosφ, cosθsinφ, -sinθ) k=(-sinφ, cosφ, 0) なので成分ごとに見ると∂x,∂y,∂zになっていると思うんですが。三次元だと面倒なので ∇=i ∂r + j (1/r)∂θ i=e_r=(cosθ, sinθ) j=e_θ=(-sinθ, cosθ) として二次元でやってみると ∂x=cosθ∂r-(sinθ/r)∂θ ∂y=sinθ∂r+(cosθ/r)∂θ となってますし。 結果からいうと質問のところに書いた式をそのまま計算できました。 i=(sinθcosφ, sinθsinφ, cosθ) j=(cosθcosφ, cosθsinφ, -sinθ) k=(-sinφ, cosφ, 0) ∇=i ∂r + j (1/r)∂θ + k (1/rsinθ)∂φ A=Ar i + Aθ j + Aφ k として、i,j,kの外積やr,θ,φでの微分は直接計算出来るのでそれを用意しておけば、あとは丁寧に計算すれば出来ました。ばらしたあとのAr(∇×i)が計算できなかったのですが、うまいこと出来たようです。 ∇=i ∂r + j (1/r)∂θ + k (1/rsinθ)∂φ を使ってdiv,ラプラシアンもちゃんと計算できました。 お世話になりました。