• ベストアンサー

x^2-y^2+x+3y-2=0 ⇔(x+y-1)(x-y+2)=0にする方法

教えてください!!いま二次曲線を学んでるのですけど、x^2-y^2+x+3y-2=0  ⇔(x+y-1)(x-y+2)=0にする方法を 教えてください!! なぜかというと、私は (x+1/2)^2-(y-3/2)=4としかできません!

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

(⇒) xの次数でそろえます。 x^2-y^2+x+3y-2=0 x^2+x-(y^2-3y+2)=0 ()の中を因数分解します。 x^2+x-(y-1)(y-2)=0 全体を因数分解します。 (x+y-1)(x-y+2)=0 ※yの次数でそろえてもできます。 ※因数分解の仕方は教科書がわかりやすいと思うので、 教科書を参照してください。 (←) 一つずつ掛け合わせて展開していきましょう。 (x+y-1)(x-y+2)=0 x^2-y^2+x+3y-2=0

nana070707
質問者

お礼

回答ありがとうございました!すごく丁寧に教えていただいて、本当にありがとうございました!>_< 最近私は、数学の世界についてもっと詳しく知りたいと思ってるので、これからも頑張ります!!!本当にどうもありがとうございました♪♪♪♪♪♪

その他の回答 (6)

回答No.7

2次式あるいはそれ以上の高次多項式で多数の変数が入ってきたとき因数分解の原則は解の公式です。最終的には他の回答と一緒ですがとりあえず無理やり因数分解するという点で機械的です。まずその式を次数の一番低いxの2次方程式だと思って(この場合yでも同じことですが)解の公式から2つの解α、βをyで表します。特にこの場合1-yとy-2と綺麗になってます。そうすれば (与式)=(x-α)(x-β)=・・・ と機械的に求まります。

nana070707
質問者

お礼

>_<わかりました!!本当にどうもありがとうございました!!!数学頑張ります♪♪♪

回答No.6

ちょっと違った方針で。 まず、 > (x+1/2)^2-(y-3/2)=4としかできません! これが違います。 冷静に計算すると x^2 - y^2 + x + 3y - 2 = (x + 1/2)^2 - 1/4 (括弧の中で 1/4 余分が出るから) - (y - 3/2)^2 + 9/4 (括弧の中で 9/4 余分で、括弧の前の - 符号でひっくり返る分) - 2 = (x + 1/2)^2 - (y - 3/2)^2 - 1/4 + 9/4 - 2 = 0 = (x + 1/2)^2 - (y - 3/2)^2 これが正解です。 あとは、2乗の差の公式で = (x + 1/2 + y - 3/2) ( x + 1/2 - y + 3/2) (- の中の符号に注意) = (x + y + 1/2 - 3/2) ( x - y + 1/2 + 3/2) = (x + y -1)(x - y + 2) = 0 ですね。

nana070707
質問者

お礼

>_<解りました!!丁寧に一つ一つ解説していただいてありがとうございます!! 間違いもキチンと訂正してノートに残せました!!ありがとうございます♪

  • debut
  • ベストアンサー率56% (913/1604)
回答No.5

これは因数分解のx^2+(a+b)x+ab=(x+a)(x+b)型ですね。 与式をxについて整理すると、   x^2+x-(y^2-3y+2)=0   x^2+x-(y-1)(y-2)=0    ここで 足してxの係数1になり、かけてー(y-1)(y-2)になるものを    考えると y-1とー(y-2) とわかり   (x+y-1)(x-y+2)=0 と因数分解できます。

nana070707
質問者

お礼

>_<いつもありがとうございます!!すごく感謝してます!! 

  • ren96
  • ベストアンサー率26% (237/885)
回答No.4

このような問題はxかyだけを集め、つまり次数を揃えて因数分解できるほうを見つけてください。そうすればあとは全体の式よりもう一回、因数分解ができるようになります。たすきがけという方法はご存知ですか?この方法はとても役に立ちますよ。答えは先を越されてしまったので略しますネ。このような問題は慣れも必要だと思います。たくさん問題を解きましょう!

nana070707
質問者

お礼

ありがとうございました!!すごく励みになりました!!もう数学あきらめようかと思いましたけど、ren96さんのを読んでまた頑張ろうと思いました>_<本当にありがとうございました!! 

回答No.3

x^2-y^2+x+3y-2にはx^2とy^2の項があるのにxyの項がありませんよね こういうときは、{(x+y)+α}{(x-y)+β}=(x+y)(x-y)+(α+β)x-(α-β)y+αβ=x^2-y^2+(α+β)x-(α-β)y+αβの変形が当てはまらないかと考えます 変形できるとすれば、α+β=1、-(α-β)=3、αβ=-2ですから、そこからα=-1、β=2が求まります

nana070707
質問者

お礼

ありがとうございました!>_< ノートに書いて頑張って覚えます!! 本当にありがとうございました♪♪♪

  • wfield
  • ベストアンサー率50% (2/4)
回答No.1

この展開もできないと先が思いやられますね。これは中学生でもできる展開です。  x^2-y^2+x+3y-2 =x^2+x-y^2+3y-2 =x^2+x-(y^2-3y+2) =x^2+{(y-1)-(y-2)}x-(y-2)(y-1) =(x+y-1)(x-y+2)=0 と展開できます。数学は基本に忠実にならなければどんなに公式を丸暗記しても使いこなせません。ですのであなたも一度基本に立ち戻ってみてはいかがでしょうか。

nana070707
質問者

お礼

ありがとございました>_<