- ベストアンサー
偶数枚のトランプのシャッフル
この問題は私が高校生の時に「発見」したものですが、いまだに解けなくて困っています。どなたか数学に強い方解いて下さい。できれば、中・高校生にも分かる解法でお願いします。 ○偶数(2n)枚のトランプがある。これを前半と後半の2つに分け、1枚ずつ互い違いになるように何回かシャッフルすると、最初にトランプのカードが並んでいた状態に戻るようである。 必ず戻るのか、証明せよ。 もしそうなら、トランプの枚数2nと、戻るのに要するシャッフルの回数mとの関係はどうなるか。 ○少し説明します。 ・トランプ6枚のとき ABCDEF>ADBECF>AEDCBF>ACEBDF>ABCDEF で、4回で元に戻ります。最初のカード(A)と最後のカード(この場合はF)はその位置が変わりません。2回シャッフルしたときにアンコの部分がちょうど逆転していて、4回で元に戻ることが予想できます。 ・トランプ8枚のとき ABCDEFGH>AEBFCGDH>ACEGBDFH>ABCDEFGH で、3回で元に戻ります。回数は6枚のときより少なくなりました。 ・トランプ10枚のとき ABCDEFGHIJ>AFBGCHDIEJ>AHFDBIGECJ>AIHGFEDCBJ>AEIDHCGBFJ>ACEGIBDFHJ>ABCDEFGHIJ で、6回で元に戻ります。このときも、3回シャッフルしたときに中身の部分が逆転しています。 ・いろいろやってみると、(1)おおよそ、枚数2nが増えるほど、元に戻るまでのシャッフルの回数mは増加する傾向がある。(2)しかし、2nが2の累乗(4,8,16・・・)のときには回数が減るようである。 ということは分かっているのですが・・・・。どなたかよろしくお願いします。
- みんなの回答 (12)
- 専門家の回答
お礼
回答ありがとうございます。出張から帰ってきたら、解けていて、本当に感謝しています。頑張ってワープロ打って下さってすみません。 ただ、私、合同≡とか、modなど全く知らなかったので、数学科卒の同僚に、合同やmodについてレクチャーを受けて、さらにこの解答についてのレフェリーをしてもらいました。「合っている。すばらしい着想だ。」とのことですので、また実際いくつかの場合についてやってみても合っているので、これで決まりでしょう。これで、すこしはホッとして死んでいけます。ただ悲しいかな、私自身の数学力のなさから、まだすっきりと理解はできていないので、これから時間をとって考えていきます。 私自身のことはさておき、合同の概念さえ理解できれば、あとは自然数の世界のことなので、中高生にも十分理解できる可能が高いですね。また、neo_otackyさん以外の方々にも大変お世話になりました。この問題に関して回答してくださった全ての皆さまに感謝します。途中愚問を発したり失礼な発言があったりしてすみませんでした。 さて、2n枚のトランプについて題意のような操作(置換・シャッフル)をするときにはこの解答で良いと思いますが、回答No.2でshushouさんが書いているように、任意の全ての操作について何回かの操作でカードは元に戻るようです。途中の議論で明らかになったように、一意的な同じ操作を続けることによって、有限枚のカードは必ずいつかは元に戻ります。では、カードの枚数が与えられ、どんな操作(置換・シャッフル)か定義されれば、元に戻るのに必要な手数も決定されるはずです。(つまりこの問題の一般化) 質問者は、回答を判断し、ポイントを進呈し、回答を締め切らなければなりません。しかし、私は前に述べたように、数学の力からしてすでにその資格が無いようです。最初の問題についてはここで回答を締め切らせていただきます。一般化された問題については、できればどなたか数学の造詣が深い方に質問者になっていただけるとうれしいのですが。