- ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:研修チーム編成を異職種で行う組み合わせの数)
研修チーム編成の異職種組み合わせ数
このQ&Aのポイント
- 17名の研修を5つのチームに分けて行います。研修は4回あり、毎回チームの編成を変えます。
- チーム編成のルールは2つあります。まず、同じ職種の人が同じチームに入ることはありません。また、以前同じチームだった人が同じチームにならないようにします。
- しかし、3回目以降の組み合わせを手作業で考えると難しく、重複が生じることがあります。効率的な手作業の方法や、最小限の重複の組み合わせを見つける方法はありますか。
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
17名だと中途半端なので、A,B,C,Dそれぞれ5名ずつ計20名とする。 この20名を次のように並べる。 A1,B1,C1,D1 A2,B2,C2,D2 A3,B3,C3,D3 A4,B4,C4,D4 A5,B5,C5,D5 2列目を1段、3列目を2段、4列目を3段ずらすと、 A1,B2,C3,D4 A2,B3,C4,D5 A3,B4,C5,D1 A4,B5,C1,D2 A5,B1,C2,D3 さらに2列目を1段、3列目を2段、4列目を3段ずらして、 A1,B3,C5,D2 A2,B4,C1,D3 A3,B5,C2,D4 A4,B1,C3,D5 A5,B2,C4,D1 さらにずらして、 A1,B4,C2,D5 A2,B5,C3,D1 A3,B1,C4,D2 A4,B2,C5,D3 A5,B3,C1,D4 さらにずらして、 A1,B5,C4,D3 A2,B1,C5,D4 A3,B2,C1,D5 A4,B3,C2,D1 A5,B4,C3,D2 これで5通りの組み合わせができる。 で、B5,C5,D5を消すと最初の組み合わせはA5が1人だけのチームになるのでこれを除いて、残り4通りの組み合わせのできあがり。
お礼
まったく同じように考えたのに、B5, C5, D5という番号をいれて、あとでそれを抜くという発想が無く、それで複雑になっていました。こんなふうに考えると、すごく単純明快ですね! 畏れいりました。ありがとうございました。さっそく仕事で使います。