• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:カードトリック問題の意味について)

カードトリック問題の意味について

このQ&Aのポイント
  • カードトリック問題の意味について
  • 21枚のカードを七行に並べ、観客に選んだ列を言わせるトリックについての意味について解説します。
  • カードトリック問題は、21枚のカードを七行に並べ、観客が選んだ列を言い当てるトリックです。

質問者が選んだベストアンサー

  • ベストアンサー
noname#101087
noname#101087
回答No.1

Good xxxxx ! よくできたトリックのようです。手際が良くないとバレそうですけど。 P*Q 枚の札を P 列(columns)、Q 行(rows)に配列した場合(前記例では、P=3 and Q=7)を解析してます。 ------------------------------------------------------------- P, Q が奇数の場合、P=2p+1 および Q=2q+1 (p>=1 and q>=1)とする。(前記例では、p=1 and q=3) 重ねた札のテッペンから順番に 1, 2, 3, ... と番号付けすると、真ん中の札の上下には (P*Q-1)/2 枚ずつあり、(前記例では10枚ずつ) 真ん中の札の番号(C)は C = (P*Q+1)/2 = p*Q+q+1 = q*P+p+1 である。(前記例では C=11) トリック・プレイ第 n ラウンドの直後、選ばれた札が重ね札のテッペンから X(n) 番目だったとしよう。 次の(n+1)ラウンドでそれが第 r 行に現れるとすれば、その r は X(n)/P 以上の整数で最小の値のものである。 m>=Y の最小整数を <Y> と書けば、選ばれた札が真ん中の列になるよう札を重ねなおしたあと、選ばれた札の番号 X(n+1) は次のような関係を満たす。  X(n+1) = p*Q+<X(n)/P> この回帰関係は非線形で、初期値 X(0) も不明である。 だが、この情報は問題の完全解を得るのに充分なもので、このトリックの動きは、関数の繰り返し適用が不動点へ引きつけて収束することのヒントになる。 問題の対称性から、選ばれた札が重ね札の上半分にあるだけに注目すれば良い。 そこで 1=<X(0)=<C と想定してみる。上記の帰納法により、すべての n について X(n)=<C である。そうすると、  X(n+1) = p*Q+<X(n)/P> = <p*Q+<C/P> = p*Q+<(q*P+p+1)/P> = p*Q+q+1=C 同様にして、Xn=C のとき X(n+1) = C である。 また X(1)>p*Q の場合は、  pO<X(1)<X(2)<....<X(N-1)<X(N)=C=X(N+1)=X(N+2)=....(不動点 !) となる整数 N があることを示せる。 (前記例では、第3ラウンドで札を行列に配列したとき、選ばれた札は必ず第4行にあり、観客にどの列にあるかを指示させたとたんに、どの札かがわかる。もう一度札を重ねて行列に配りなおせば、選ばれた札はど真ん中へ。もっと繰り返すと、いつもど真ん中なのでネタばれしそう) ------------------------------------------------------------- バナッハ(Banach)の不動点定理 (縮小写像は唯一つの不動点を持つ) もどきの説明です。 もっとも、「札師」はそんな定理なんぞ知らなくてもやれてます。

すると、全ての回答が全文表示されます。