f:[a,b]→Rに於いて,fが有界変動で連続の時,f=f_1-f_2 (但し,f_1,f_2は連続な増加関数)
こんにちは。
f:[a,b]→R (但し,a,b∈R,a<b)とする。
V((s,t],f)は(s,t]⊂[a,b]でのfの変動
⇔
V((s,t],f)=sup{Σ[1≦k≦n]|f(s_k)-f(s_(k-1))|∈R∪{∞};n∈N}
(但し,s_0,s_1,…,s_nはs=s_0<s_1<…<s_n=tなる分割)
そして,特にV((s,t],f)<∞の時,fは(s,t]で有界変動という。
V((a,b],f)<∞の時,単にfは有界変動であるという。
が変動の定義だと思います。
f:[a,b]→Rに於いて,fが有界変動で連続の時,f=f_1-f_2 (但し,f_1,f_2は連続な増加関数)となる事を示せ。
という問題です。
f_1,f_2とも増加関数とし,f(x) (但し,x∈(a,b])の値が正の時はf_1>f_2で
負の時にはf_2がf_1を追い抜き,f_1<f_2の関係にすれば,
常にf_1,f_2とも増加関数でfの値をf_1とf_2との差で表す事ができることは頭の中では分かるのですが
実際には式でどうやって示せばよいのでしょうか?
お礼
ありがとうございました。スッキリしました。