SKJAXN の回答履歴
- 電界における荷電粒子の運動エネルギー
空間的に一様な電場が発生している。その電場をEとする。そのような空間に、電荷q、質量mをもつ荷電粒子を置いた。 x=aの地点に荷電粒子を静かにおいて手を離す。 この粒子がx=bの地点に到達したときにもっている運動エネルギーをもとめよ。 ただしニュートンの運動方程式をつかって計算せよ。 という問題なのですが計算過程などわかるように書いていただけるとありがたいです。
- ベストアンサー
- 物理学
- bitamin123456
- 回答数1
- 電磁気学、コンデンサーの回路について
写真のような回路があって、静電容量がそれぞれC1、C2のコンデンサーを、電圧E1,E2に充電した後に、時刻t=0にスイッチを閉じる。抵抗Rに流れる電流をI(t)、E1>E2とした時、次の問に答えよ。 1.スイッチを閉じる直前にコンデンサーC1,C2に蓄えられるエネルギーの和は? 2.スイッチを閉じて回路が定常状態になった時、C1にかかる電圧は? 3.I(t)の微分方程式は? 4.I(t)は? 5.定常状態に達するまでに抵抗Rで消費されるエネルギーは? よろしくお願いします!
- 並進運動と回転運動との合成について
物理法則についてお聞きしたいことがあります。 並進運動と回転運動が同時に生じた場合の物体の動き方についてお聞きしたいことがあります。なお、私は、専門家ではないため、用語の使い方が適切ではないかもしれませんが、ご容赦ください。 例えば、人が、前方へ進んでいたとします(重心の位置は、当該人の腰あたり)。その状況で、その人の進行方向に垂直な力が進行方向右側から、重心より低い位置に加わったとします。この場合の、人の頭の動き方を教えて下さい。 私が考えているのは、その人は、衝突する前にまっすぐに進もうとする並進運動が生じておりますので、衝突後もその運動が続きます。加えて、重心より低い位置での衝突により、頭部を含む重心よりも上の部分には、衝突による力が加わった方向(右から左)とは逆の運動(左から右)が加わり、回転運動となる。その結果、上空から見ると、並進運動と回転運動とが合成され、頭部は被害者が衝突前に元々進行しようとしていた方向から見て右斜め前に移動するように思うのですが、正しいでしょうか? どなたかご教授お願いします。
- 並進運動と回転運動との合成について
物理法則についてお聞きしたいことがあります。 並進運動と回転運動が同時に生じた場合の物体の動き方についてお聞きしたいことがあります。なお、私は、専門家ではないため、用語の使い方が適切ではないかもしれませんが、ご容赦ください。 例えば、人が、前方へ進んでいたとします(重心の位置は、当該人の腰あたり)。その状況で、その人の進行方向に垂直な力が進行方向右側から、重心より低い位置に加わったとします。この場合の、人の頭の動き方を教えて下さい。 私が考えているのは、その人は、衝突する前にまっすぐに進もうとする並進運動が生じておりますので、衝突後もその運動が続きます。加えて、重心より低い位置での衝突により、頭部を含む重心よりも上の部分には、衝突による力が加わった方向(右から左)とは逆の運動(左から右)が加わり、回転運動となる。その結果、上空から見ると、並進運動と回転運動とが合成され、頭部は被害者が衝突前に元々進行しようとしていた方向から見て右斜め前に移動するように思うのですが、正しいでしょうか? どなたかご教授お願いします。
- 電磁気学、コンデンサーの回路について
写真のような回路があって、静電容量がそれぞれC1、C2のコンデンサーを、電圧E1,E2に充電した後に、時刻t=0にスイッチを閉じる。抵抗Rに流れる電流をI(t)、E1>E2とした時、次の問に答えよ。 1.スイッチを閉じる直前にコンデンサーC1,C2に蓄えられるエネルギーの和は? 2.スイッチを閉じて回路が定常状態になった時、C1にかかる電圧は? 3.I(t)の微分方程式は? 4.I(t)は? 5.定常状態に達するまでに抵抗Rで消費されるエネルギーは? よろしくお願いします!
- 並進運動と回転運動との合成について
物理法則についてお聞きしたいことがあります。 並進運動と回転運動が同時に生じた場合の物体の動き方についてお聞きしたいことがあります。なお、私は、専門家ではないため、用語の使い方が適切ではないかもしれませんが、ご容赦ください。 例えば、人が、前方へ進んでいたとします(重心の位置は、当該人の腰あたり)。その状況で、その人の進行方向に垂直な力が進行方向右側から、重心より低い位置に加わったとします。この場合の、人の頭の動き方を教えて下さい。 私が考えているのは、その人は、衝突する前にまっすぐに進もうとする並進運動が生じておりますので、衝突後もその運動が続きます。加えて、重心より低い位置での衝突により、頭部を含む重心よりも上の部分には、衝突による力が加わった方向(右から左)とは逆の運動(左から右)が加わり、回転運動となる。その結果、上空から見ると、並進運動と回転運動とが合成され、頭部は被害者が衝突前に元々進行しようとしていた方向から見て右斜め前に移動するように思うのですが、正しいでしょうか? どなたかご教授お願いします。
- 力学の問題です。
トラスの問題がわかりません。 どなたか教えてください。 よろしくお願いします。 [問題] 次の図で、部材CD、CG、HGにはたらく力を切断法により求めよ。
- ベストアンサー
- 物理学
- logical0512
- 回答数1
- 物理学 電磁気学について
電磁気学を勉強しています。 問題集でわからない問題がありました。 x軸上に置かれた長さLのプラスチック棒に正電荷Qが一様に分布している。 x軸上の点P1(棒の左端から距離d)での電位(無限遠でV=0) を求めなさい。 線電荷の問題だと思いますがどのように考えたらいいのかわかりません。 解答よろしくお願いします。
- 熱力学、定容サイクルについて。
定容サイクルについての問題がわからないので 教えてください。 定容サイクルで作動し、行程容積600立方センチメートルで 圧縮比13の熱機関がある。 圧縮全圧力750mmHg、温度40度、最高圧力8.5MPaとする。 動作流体は空気である。以下の設問に答えよ。 (必要な物性値は適当な参考書でいいそうです) 1、圧縮後の圧力、温度 2、最高温度 3、膨張後の圧力温度 4、仕事量、熱効率 5、このサイクルを一分間に20回行った時の出力 参考書などで調べましたが、よく理解できず投稿させていただきました。 もしよろしければ回答をお願いいたします。
- 締切済み
- 物理学
- mirandakerr
- 回答数2
- 力学(剛体の運動)の問題です
院試の過去問題がわかりません. 半径r,慣性モーメントIの円板が角速度ω0で回転している.これを止めるためにブレーキを図(a),図(b)の2通りの方法でかけた.円板が止まるまでの時間と回転角の比をそれぞれ求めよ.ただし,ブラシと円板との動摩擦係数をμとし,ブレーキの圧力をF,ブラシの幅をlとする. 以上です.よろしくお願いします.
- 中和反応の反応式がわかりません。
仕事で過酸化水素(液体)を重亜硫酸ソーダ(粉末)で中和するように言われたのですが 反応式が分からず、困っています。 私が考えたのは以下の式なのですが どうも自信がありません。どうか教えていただけると助かります。 H2O2+NaHSO3→H2O+NaHSO4
- 物理の質問(難)
ホール効果 図のように、3辺の長さがそれぞれa,b,lの直方体の導体がある。P1~P6は直方体の6つの面を表している。向きあった面P1とP2は、導線で起電力Vの電池につながれ。上面P3と下面P4の間には電気容量Cのコンデンサーにつながれている。ただし、電池の内部抵抗は無視する。直方体の辺にそって、x、y、z軸を図のようにとることとする。また、導体にはx軸の正の向きに一様な磁束密度Bの磁場が与えられている。電子の電荷を-eとして、次の問いに答えよ。 導体中の電子はコンデンサーの回路に入っていくんですか??また、充電するんですか?? いまいち、コンデンサーとの関連性がイメージできません。 解説お願いします。
- 物理の質問(難)
ホール効果 図のように、3辺の長さがそれぞれa,b,lの直方体の導体がある。P1~P6は直方体の6つの面を表している。向きあった面P1とP2は、導線で起電力Vの電池につながれ。上面P3と下面P4の間には電気容量Cのコンデンサーにつながれている。ただし、電池の内部抵抗は無視する。直方体の辺にそって、x、y、z軸を図のようにとることとする。また、導体にはx軸の正の向きに一様な磁束密度Bの磁場が与えられている。電子の電荷を-eとして、次の問いに答えよ。 導体中の電子はコンデンサーの回路に入っていくんですか??また、充電するんですか?? いまいち、コンデンサーとの関連性がイメージできません。 解説お願いします。
- 電気磁気学の問題です。
図のように、x-z方向に無限に広く 厚さが無視できる2枚の導体板が距離2d(m)をあけて 平行におかれている。z軸正の向きに、単位長さあたりの 電流密度J(m/A)の一様な定常電流を各導体板にながした。 このとき次の各問に答えなさい。 問1 各領域(i)y<d,(ii)|y|<d,(iii)y>dにおける磁束密度ベクトルBをそれぞれ成分で示しなさい。 問2 ベクトルポテンシャルベクトルAは電流と同じ方向であるとして、各領域(i)y<d,(ii)|y|<d,(iii)y>dにおけるベクトルポテンシャルベクトルAをそれぞれ成分で示しなさい。ただし、y=0の平面における ベクトルポテンシャルをベクトルA=(0,0,A₀)(A₀は任意の定数)としなさい。 大学院入試、電磁磁気学の問題です。 問1は恐らくビオサバールの体積積分を使うと解けると思ったのですが、体積のとらえ方が分からずに詰まってしまいました。 問2は「y=0の平面におけるベクトルポテンシャルをベクトルA=(0,0,A₀)(A₀は任意の定数)」の使い方とまたしても体積積分の体積のとらえ方が分かりません・・・ そもそもあまり自分の考え方に自信がないので、着目すべきポイントが間違っていればご指摘下さい。
- ベストアンサー
- 物理学
- tamagonatto
- 回答数5
- 回転する剛体の壁との衝突後の運動
どなたかこの問題の疑問点についてご教授ください。 (問題) 長さ2aの質量が無視できる棒の両端に質量mの質点が取り付けられてた剛体と、壁との衝突を考える。剛体は常にxy平面内で運動しているとし、質量中心の初期速度を(Vx,Vy), この点周りの反時計回りの回転運動の初期角速度をω(>0)とする。ただし、重力および、壁と剛体との間の摩擦は無視できるものとする。以下の問いに答えよ。 (問) 質点と壁は弾性衝突するとし、その時に壁が剛体に及ぼす力積をΔfとする。また壁はなめらかであり、力積はy成分のみを持つとする。衝突直後の剛体の質量中心の速度を,角速度を(V'x,V'y), この点周りの反時計回りの回転運動の初期角速度をω'として,衝突前後の剛体の角運動量変化の式、運動量変化の式を示せ。 また弾性衝突した質点の衝突直前後のy方向速度Uy,U'yが関係式U'y=-Uyをみたすことと先ほど求めた式を用いて、衝突直後のV'x、V'y、ω'をa、θ、Vx、Vy、ωを用いて表せ。 (疑問点) 運動量、角運動量の式をそれぞれ 2m√(Vx^2+Vy^2) + Δf = 2m√(V'x^2+V'y^2) 2ma^2ω+Δfa*cosθ=2ma^2ω' というように立てて、質点のy方向の運動量変化の式 2mUy + Δf = 2mU'y の式からΔfを4mUyと算出して角運動量変化の式に代入して ω' = ωcos^2θ+2Vy/a*cosθ+ω と算出してこれを V'y = U'y - v'y = Vy + aωcosθ - aω'cosθ (v'yは衝突後の質量中心周りの回転速度) に代入したのですが、得られたのは V'y= Vy - (aωcos^3θ+2Vcos^2θ) とy方向の変位が振動する解となってしまいました。 この手順の訂正箇所をどなたか教えてください。 あと,V'xはx方向の力積を受けていないからVx=V'xでいいのでしょうか。
- ベストアンサー
- 物理学
- turedurePh
- 回答数7
- 回転する剛体の壁との衝突後の運動
どなたかこの問題の疑問点についてご教授ください。 (問題) 長さ2aの質量が無視できる棒の両端に質量mの質点が取り付けられてた剛体と、壁との衝突を考える。剛体は常にxy平面内で運動しているとし、質量中心の初期速度を(Vx,Vy), この点周りの反時計回りの回転運動の初期角速度をω(>0)とする。ただし、重力および、壁と剛体との間の摩擦は無視できるものとする。以下の問いに答えよ。 (問) 質点と壁は弾性衝突するとし、その時に壁が剛体に及ぼす力積をΔfとする。また壁はなめらかであり、力積はy成分のみを持つとする。衝突直後の剛体の質量中心の速度を,角速度を(V'x,V'y), この点周りの反時計回りの回転運動の初期角速度をω'として,衝突前後の剛体の角運動量変化の式、運動量変化の式を示せ。 また弾性衝突した質点の衝突直前後のy方向速度Uy,U'yが関係式U'y=-Uyをみたすことと先ほど求めた式を用いて、衝突直後のV'x、V'y、ω'をa、θ、Vx、Vy、ωを用いて表せ。 (疑問点) 運動量、角運動量の式をそれぞれ 2m√(Vx^2+Vy^2) + Δf = 2m√(V'x^2+V'y^2) 2ma^2ω+Δfa*cosθ=2ma^2ω' というように立てて、質点のy方向の運動量変化の式 2mUy + Δf = 2mU'y の式からΔfを4mUyと算出して角運動量変化の式に代入して ω' = ωcos^2θ+2Vy/a*cosθ+ω と算出してこれを V'y = U'y - v'y = Vy + aωcosθ - aω'cosθ (v'yは衝突後の質量中心周りの回転速度) に代入したのですが、得られたのは V'y= Vy - (aωcos^3θ+2Vcos^2θ) とy方向の変位が振動する解となってしまいました。 この手順の訂正箇所をどなたか教えてください。 あと,V'xはx方向の力積を受けていないからVx=V'xでいいのでしょうか。
- ベストアンサー
- 物理学
- turedurePh
- 回答数7
- 回転する剛体の壁との衝突後の運動
どなたかこの問題の疑問点についてご教授ください。 (問題) 長さ2aの質量が無視できる棒の両端に質量mの質点が取り付けられてた剛体と、壁との衝突を考える。剛体は常にxy平面内で運動しているとし、質量中心の初期速度を(Vx,Vy), この点周りの反時計回りの回転運動の初期角速度をω(>0)とする。ただし、重力および、壁と剛体との間の摩擦は無視できるものとする。以下の問いに答えよ。 (問) 質点と壁は弾性衝突するとし、その時に壁が剛体に及ぼす力積をΔfとする。また壁はなめらかであり、力積はy成分のみを持つとする。衝突直後の剛体の質量中心の速度を,角速度を(V'x,V'y), この点周りの反時計回りの回転運動の初期角速度をω'として,衝突前後の剛体の角運動量変化の式、運動量変化の式を示せ。 また弾性衝突した質点の衝突直前後のy方向速度Uy,U'yが関係式U'y=-Uyをみたすことと先ほど求めた式を用いて、衝突直後のV'x、V'y、ω'をa、θ、Vx、Vy、ωを用いて表せ。 (疑問点) 運動量、角運動量の式をそれぞれ 2m√(Vx^2+Vy^2) + Δf = 2m√(V'x^2+V'y^2) 2ma^2ω+Δfa*cosθ=2ma^2ω' というように立てて、質点のy方向の運動量変化の式 2mUy + Δf = 2mU'y の式からΔfを4mUyと算出して角運動量変化の式に代入して ω' = ωcos^2θ+2Vy/a*cosθ+ω と算出してこれを V'y = U'y - v'y = Vy + aωcosθ - aω'cosθ (v'yは衝突後の質量中心周りの回転速度) に代入したのですが、得られたのは V'y= Vy - (aωcos^3θ+2Vcos^2θ) とy方向の変位が振動する解となってしまいました。 この手順の訂正箇所をどなたか教えてください。 あと,V'xはx方向の力積を受けていないからVx=V'xでいいのでしょうか。
- ベストアンサー
- 物理学
- turedurePh
- 回答数7
- 回転する剛体の壁との衝突後の運動
どなたかこの問題の疑問点についてご教授ください。 (問題) 長さ2aの質量が無視できる棒の両端に質量mの質点が取り付けられてた剛体と、壁との衝突を考える。剛体は常にxy平面内で運動しているとし、質量中心の初期速度を(Vx,Vy), この点周りの反時計回りの回転運動の初期角速度をω(>0)とする。ただし、重力および、壁と剛体との間の摩擦は無視できるものとする。以下の問いに答えよ。 (問) 質点と壁は弾性衝突するとし、その時に壁が剛体に及ぼす力積をΔfとする。また壁はなめらかであり、力積はy成分のみを持つとする。衝突直後の剛体の質量中心の速度を,角速度を(V'x,V'y), この点周りの反時計回りの回転運動の初期角速度をω'として,衝突前後の剛体の角運動量変化の式、運動量変化の式を示せ。 また弾性衝突した質点の衝突直前後のy方向速度Uy,U'yが関係式U'y=-Uyをみたすことと先ほど求めた式を用いて、衝突直後のV'x、V'y、ω'をa、θ、Vx、Vy、ωを用いて表せ。 (疑問点) 運動量、角運動量の式をそれぞれ 2m√(Vx^2+Vy^2) + Δf = 2m√(V'x^2+V'y^2) 2ma^2ω+Δfa*cosθ=2ma^2ω' というように立てて、質点のy方向の運動量変化の式 2mUy + Δf = 2mU'y の式からΔfを4mUyと算出して角運動量変化の式に代入して ω' = ωcos^2θ+2Vy/a*cosθ+ω と算出してこれを V'y = U'y - v'y = Vy + aωcosθ - aω'cosθ (v'yは衝突後の質量中心周りの回転速度) に代入したのですが、得られたのは V'y= Vy - (aωcos^3θ+2Vcos^2θ) とy方向の変位が振動する解となってしまいました。 この手順の訂正箇所をどなたか教えてください。 あと,V'xはx方向の力積を受けていないからVx=V'xでいいのでしょうか。
- ベストアンサー
- 物理学
- turedurePh
- 回答数7