SKJAXN の回答履歴
- 最終濃度の計算が分かりません。
ある10%の溶液を10mLの溶液に添加し、最終濃度を0.5%にするには溶液が0.53mL必要になるのですが、それを導き出す計算が分からず困っています。教えてください、よろしくお願いします。
- コンデンサーの基本的な問題を教えて下さい
基本的な問題なのですが、 面積Sの金属板が距離d離して平衡に向かい合っている。電気容量はC、電気量はQで、真空の誘電率はε₀である。 この時、金属板間の電場Eと、電束密度Dを求めなさい、という問題です。 E=Q/(ε₀S)で、D=Q/Sだと思うのですが、これでいいでしょうか?確認お願いします。 間違えていたら答えを教えて下さい。 あと、これを求める式(または説明とか)がいるんですが、どうかけばいいでしょうか? お願いいたします
- ベストアンサー
- 物理学
- noname#246158
- 回答数3
- 物理のバネの問題教えてください
質点1と質点2が3つのバネでつながれている。 2つの質点はともに m 、3つのバネはともに自然長で l 、バネ定数は k である。 時刻t=0で質点は静止しているが、平行の位置からの変位は、x1(0)=a、x2(0)=bただし、0<a<bである。 質点1,2の運動は平行位置からの変位x1,x2で表す。(右向きが正) (1)質点1、質点2の運動方程式は? (2)y1=x1+x2、y2=x1-x2とする。y1、y2を満たす微分方程式は? (3)y1、y2の角振動数をそれぞれω1、ω2としたとき、ω2/ω1も値は? (4)y1*y2の方程式を解く (5)x1、x2を求める (1) mx1"=-kx1+k(x2-x1) mx2"=-kx2-k(x2-x1) で正しいですか? (2)(1)をy1、y2を使い、表したらいいのですか? (3)~(5)は分かりません。 解き方を教えてください。 バネ定数k 質点1 質点2 |―∨∨∨∨―●―∨∨∨∨―●―∨∨∨∨―|
- 物理学の単振動の問題を教えてください
この物理の単振動の問題を教えてください。 「以下の写真のように、人と、水平方向に単振動をする球体があるとします。 人がこれを押す外力の周期が球体の周期T(単振動ω)と同じとき、球体の運動を考え以下の問いに答えなさい。ただし、ω=1と考えて答えなさい。 (1)単位質量あたりの外力をf(t)として鉛直真下を原点とした変位xに対する運動方程式(微分方程式)を書きなさい。 ➁外力f(t)が下の写真のグラフの時、0≦t≦3Tの解を求めなさい。ただし、t=0の時x=-1、dx/dt=0とする。また、t=T/2、T、3T/2T、5T/2、3Tでは、x、dx/dtが連続とする。 ➂0≦t≦3Tの解のグラフを書きなさい。」 一部でも構いません。分かる方、教えてください
- ベストアンサー
- 物理学
- noname#246158
- 回答数4
- 物理学の単振動の問題を教えてください
この物理の単振動の問題を教えてください。 「以下の写真のように、人と、水平方向に単振動をする球体があるとします。 人がこれを押す外力の周期が球体の周期T(単振動ω)と同じとき、球体の運動を考え以下の問いに答えなさい。ただし、ω=1と考えて答えなさい。 (1)単位質量あたりの外力をf(t)として鉛直真下を原点とした変位xに対する運動方程式(微分方程式)を書きなさい。 ➁外力f(t)が下の写真のグラフの時、0≦t≦3Tの解を求めなさい。ただし、t=0の時x=-1、dx/dt=0とする。また、t=T/2、T、3T/2T、5T/2、3Tでは、x、dx/dtが連続とする。 ➂0≦t≦3Tの解のグラフを書きなさい。」 一部でも構いません。分かる方、教えてください
- ベストアンサー
- 物理学
- noname#246158
- 回答数4
- 高校数学の行列の問題の別解がわかりません
高校数学の行列なのですが、同じ問題で質問を出してますが、こちらは別解が分からなかった ので新しく出しました 問題は 行列(1/5,2/5,p,q)で表さられる平面上の1次変換fが原点を通るある直線l上への正射影となるように実数p,qの値を定め、直線lの方程式を求めよ で解説が直線lの方向ベクトルを↑e=(cosθ,sinθ)とすると,fはl上への正射影だから f;(cosθ、sinθ)→(cosθ,sinθ),(-sinθ,cosθ)→(0,0)となっていたのですが f;(cosθ、sinθ)→(cosθ,sinθ)は分かるのですが、(-sinθ,cosθ)→(0,0)がどういう事なのか 分かりません この後は解説に書いてある事は分かりました 後もうひとつの別解が↑x'=(↑x,↑e)↑e=↑e(↑e,↑x) これを行列を用いて表すと とあるのですが、この最初の式が何を表しているのかが分かりません (続き):(x',y')=(cosθ,sinθ)(cosθ,sinθ)(x,y)=(cos^2θ,cosθsinθ,sinθcosθ,sin^2θ)(x,y) (x',y')=からの式は(cosθ,sinθ)は縦書きでcosθが上,cosθが下です,(cosθ,sinθ)は横書きでcosθが左sinθが右です(x,y)は縦書きでxが上,yが下です,(cos^2θ,cosθsinθ,sinθcosθ,sin^2θ)は行列で左から左上、右上、左下、右下の順です この式も行列で表すと何故あの式になるのか分かりません 第三の別解がまだありまして、直線l上への正射影を考えるから直線l方向の固有値は1,lに垂直な方向の固有値は0とあるのですが、何故固有値が1や0になるのか分かりません 後は(注意)に平面上の点↑xをfで変換した点A↑xは直線l上の点であるからfは不動である よってA^2↑x=A↑xとあるのですが、これも何でこんな事が言えるのか良く分からないです たくさんありますが、どうかよろしくお願いします
- ベストアンサー
- 数学・算数
- arutemawepon
- 回答数4
- 高校数学の行列の問題の別解がわかりません
高校数学の行列なのですが、同じ問題で質問を出してますが、こちらは別解が分からなかった ので新しく出しました 問題は 行列(1/5,2/5,p,q)で表さられる平面上の1次変換fが原点を通るある直線l上への正射影となるように実数p,qの値を定め、直線lの方程式を求めよ で解説が直線lの方向ベクトルを↑e=(cosθ,sinθ)とすると,fはl上への正射影だから f;(cosθ、sinθ)→(cosθ,sinθ),(-sinθ,cosθ)→(0,0)となっていたのですが f;(cosθ、sinθ)→(cosθ,sinθ)は分かるのですが、(-sinθ,cosθ)→(0,0)がどういう事なのか 分かりません この後は解説に書いてある事は分かりました 後もうひとつの別解が↑x'=(↑x,↑e)↑e=↑e(↑e,↑x) これを行列を用いて表すと とあるのですが、この最初の式が何を表しているのかが分かりません (続き):(x',y')=(cosθ,sinθ)(cosθ,sinθ)(x,y)=(cos^2θ,cosθsinθ,sinθcosθ,sin^2θ)(x,y) (x',y')=からの式は(cosθ,sinθ)は縦書きでcosθが上,cosθが下です,(cosθ,sinθ)は横書きでcosθが左sinθが右です(x,y)は縦書きでxが上,yが下です,(cos^2θ,cosθsinθ,sinθcosθ,sin^2θ)は行列で左から左上、右上、左下、右下の順です この式も行列で表すと何故あの式になるのか分かりません 第三の別解がまだありまして、直線l上への正射影を考えるから直線l方向の固有値は1,lに垂直な方向の固有値は0とあるのですが、何故固有値が1や0になるのか分かりません 後は(注意)に平面上の点↑xをfで変換した点A↑xは直線l上の点であるからfは不動である よってA^2↑x=A↑xとあるのですが、これも何でこんな事が言えるのか良く分からないです たくさんありますが、どうかよろしくお願いします
- ベストアンサー
- 数学・算数
- arutemawepon
- 回答数4
- 高校数学の行列の問題の別解がわかりません
高校数学の行列なのですが、同じ問題で質問を出してますが、こちらは別解が分からなかった ので新しく出しました 問題は 行列(1/5,2/5,p,q)で表さられる平面上の1次変換fが原点を通るある直線l上への正射影となるように実数p,qの値を定め、直線lの方程式を求めよ で解説が直線lの方向ベクトルを↑e=(cosθ,sinθ)とすると,fはl上への正射影だから f;(cosθ、sinθ)→(cosθ,sinθ),(-sinθ,cosθ)→(0,0)となっていたのですが f;(cosθ、sinθ)→(cosθ,sinθ)は分かるのですが、(-sinθ,cosθ)→(0,0)がどういう事なのか 分かりません この後は解説に書いてある事は分かりました 後もうひとつの別解が↑x'=(↑x,↑e)↑e=↑e(↑e,↑x) これを行列を用いて表すと とあるのですが、この最初の式が何を表しているのかが分かりません (続き):(x',y')=(cosθ,sinθ)(cosθ,sinθ)(x,y)=(cos^2θ,cosθsinθ,sinθcosθ,sin^2θ)(x,y) (x',y')=からの式は(cosθ,sinθ)は縦書きでcosθが上,cosθが下です,(cosθ,sinθ)は横書きでcosθが左sinθが右です(x,y)は縦書きでxが上,yが下です,(cos^2θ,cosθsinθ,sinθcosθ,sin^2θ)は行列で左から左上、右上、左下、右下の順です この式も行列で表すと何故あの式になるのか分かりません 第三の別解がまだありまして、直線l上への正射影を考えるから直線l方向の固有値は1,lに垂直な方向の固有値は0とあるのですが、何故固有値が1や0になるのか分かりません 後は(注意)に平面上の点↑xをfで変換した点A↑xは直線l上の点であるからfは不動である よってA^2↑x=A↑xとあるのですが、これも何でこんな事が言えるのか良く分からないです たくさんありますが、どうかよろしくお願いします
- ベストアンサー
- 数学・算数
- arutemawepon
- 回答数4
- 物理の問題について
質量mの物体が摩擦のない床の上を一定速度v0で剛体壁に向かって水平に運動し、 剛体壁に衝突する際に以下の緩衝を行う場合を考える。 物体は剛体、緩衝は質量が無視できる剛体板を介して行い、衝突後の剛体板は 水平方向のみ移動するものとする。 剛体壁と剛体板の間がばね定数kのばねと減衰力がcx’のダンパーが並列に 取り付けられています。またxは物体の移動距離。 運動する物体に作用する力が常に一定値W0となるとき、剛体板に衝突した瞬間から 時間tを計測し、その時点からの物体の移動距離をxとする。 そのとき、xは x=v0t-(W0/2m)t^2 と表せられます。 次に物体が受ける力が一定となるには次式を満たす必要があることを示せ。 というのが問題です。 k-2cW0/m=0 どうしても上のような答えにはなりません。 どうしたら導けるのでしょうか。教えてください。
- 高校数学の行列の問題の別解がわかりません
高校数学の行列なのですが、同じ問題で質問を出してますが、こちらは別解が分からなかった ので新しく出しました 問題は 行列(1/5,2/5,p,q)で表さられる平面上の1次変換fが原点を通るある直線l上への正射影となるように実数p,qの値を定め、直線lの方程式を求めよ で解説が直線lの方向ベクトルを↑e=(cosθ,sinθ)とすると,fはl上への正射影だから f;(cosθ、sinθ)→(cosθ,sinθ),(-sinθ,cosθ)→(0,0)となっていたのですが f;(cosθ、sinθ)→(cosθ,sinθ)は分かるのですが、(-sinθ,cosθ)→(0,0)がどういう事なのか 分かりません この後は解説に書いてある事は分かりました 後もうひとつの別解が↑x'=(↑x,↑e)↑e=↑e(↑e,↑x) これを行列を用いて表すと とあるのですが、この最初の式が何を表しているのかが分かりません (続き):(x',y')=(cosθ,sinθ)(cosθ,sinθ)(x,y)=(cos^2θ,cosθsinθ,sinθcosθ,sin^2θ)(x,y) (x',y')=からの式は(cosθ,sinθ)は縦書きでcosθが上,cosθが下です,(cosθ,sinθ)は横書きでcosθが左sinθが右です(x,y)は縦書きでxが上,yが下です,(cos^2θ,cosθsinθ,sinθcosθ,sin^2θ)は行列で左から左上、右上、左下、右下の順です この式も行列で表すと何故あの式になるのか分かりません 第三の別解がまだありまして、直線l上への正射影を考えるから直線l方向の固有値は1,lに垂直な方向の固有値は0とあるのですが、何故固有値が1や0になるのか分かりません 後は(注意)に平面上の点↑xをfで変換した点A↑xは直線l上の点であるからfは不動である よってA^2↑x=A↑xとあるのですが、これも何でこんな事が言えるのか良く分からないです たくさんありますが、どうかよろしくお願いします
- ベストアンサー
- 数学・算数
- arutemawepon
- 回答数4
- 高校数学の行列の1次変換の問題です
行列(1/5,2/5,p,q)で表さられる平面上の1次変換fが原点を通るある直線l上への正射影となるように実数p,qの値を定め、直線lの方程式を求めよ 基本的な事がよく分かったいないですが、どうかよろしくお願いします、チャートは読んだのですが・・・ 解説はまず、直線x=0上への正射影の行列は(0,0,0,1)であるから不適とあります、この(0,0,0,1)が何故 x=0上への正射影の行列になるのかと、これが何故駄目なのかを教えてください その後よってl;y=ax上への正射影を考えれば良いとあります、これも何でなのか良くわかりません (続き) l上の任意の点(x,ax)はfで不変であるから (x',y')=(1/5,2/5,p,q)(x,y)=(x,ax) よってx=x/5+2ax/5=x これが任意の実数xに対して成り立つから a=2,よってl:y=2x(1) 次に平面上の任意の点P(x,y)の像P' (x',y')=(1/5,2/5,p,q)(x,y)=(x/5+2y/5,px+qy)は(1)上に あるからpx+qy=2(x/5+2y/5) これが任意の実数x,yに対して成り立つからp=2/5,q=4/5(必要条件) 逆にこのとき=(-4/5,2/5,2/5,-1/5)(x,y)=,↑PP'=(A-E)↑OP1/5(2x-y)(-2,1)⊥(1,2)であるから とあるのですが↑PP'が(A-E)↑OP1/5(2x-y)(-2,1)に何でなるのかと特に(A-E)↑OPの所です、それが(1,2)に垂直になるのが何故か教えてください (続き)よってfは正射影である(十分条件) p=2/5,q=4/5
- ベストアンサー
- 数学・算数
- arutemawepon
- 回答数3
- 高校の数学の回転体の問題です
0<θ<π/2とする時、円x^2+(y-2sinθ)^2=1をx軸のまわりに回転させた回転体の体積を求めよ 円の上側の部分をx軸のまわりに1回転した回転体は、最大直径が2sinθ+1で 厚さが2の円盤であり、その体積がπ∫[-1→1]{√(1-x^2)+2sinθ}^2dx、 円の下側の部分をx軸のまわりに1回転した回転体は、最小直径が2sinθ-1で 厚さが2の円盤になり、その体積がπ∫[-1→1]{-√(1-x^2)+2sinθ}^2dx。 大きい円盤から小さい円盤を切り取った残りが円をx軸のまわりに1回転した 回転体であるとあるのですが、 上側をx軸に回りに回すと半径2sinθの円板になりませんか? 下側が半径2sinθ+1の円板だと思うのですが、中心からx軸までの距離が上側で2sinθ,下側で2sinθ+1ですから
- ベストアンサー
- 数学・算数
- arutemawepon
- 回答数1
- フーリエ級数の問題です
f(x)= x (-π<= x <=π) のフーリエ級数を用いて無限級数和 (1) Σ[n=1~∞] Σ 1/n^2 (2) Σ[n=1~∞] (-1)^n/n^2 を求めよという問題ですが、フーリエ級数は求められて f(x)= 2Σ[n=1~∞] {(-1)^n+1}*sin(nx)/n になるけれど、xに何を代入すればいいかわかりません。御回答よろしくお願いします。
- この問題が解けません、どなたか解いてください。
電磁気学の問題なのですが、解けずにいて困ってます。 内容は、 長さ2Lの棒に電荷密度λで一様に電荷が分布している。棒の中心を原点とし、y軸の方向に電荷分布をとるものとする。 電荷の分布を微小区間Δsに分割する。原点からsだけ離れた微小区間Δsによる点P(x,y)での電場ΔEの大きさを求める、というものです。 この問題を、クーロンの法則を用いて解いて頂たいです。 できるだけ詳しく解いて頂けると嬉しいです。 よろしくお願いします。
- 解き方を教えてください
中央に重量mの物体を載せた長さLの軽い台車の一端が水平面上、 他端が30°の傾きをなす斜面上にあるとき、台車に水平となす角度θを もたせるためには台車に加える力Fはいかほどか。 水平面と斜面の摩擦は無視してよい。 添付図のように考えて F-m*sinθ*cosθ-(m/2)*cos30°*sin30°=0 と、考えました。 解答は F=m/{2*(tanθ+√3)} と、なっています。 宜しくお願いいたします。
- 解き方を教えてください
中央に重量mの物体を載せた長さLの軽い台車の一端が水平面上、 他端が30°の傾きをなす斜面上にあるとき、台車に水平となす角度θを もたせるためには台車に加える力Fはいかほどか。 水平面と斜面の摩擦は無視してよい。 添付図のように考えて F-m*sinθ*cosθ-(m/2)*cos30°*sin30°=0 と、考えました。 解答は F=m/{2*(tanθ+√3)} と、なっています。 宜しくお願いいたします。