grothendieck の回答履歴
- Tr[sl[a]sl[b]]=a・bの計算について
Tr[sl[a]sl[b]]=a・bの計算について教えてください。 aのスラッシュをsl[a]、bのスラッシュをsl[b]とすると下記のようになると思います。 sl[a]={{a0,0,a3,a1-a2 i},{0,a0,a1+a2 i,-a3},{-a3,-a1+a2 i,-a0,0},{-a1-a2 i,a3,0,-a0}}; sl[b]={{b0,0,b3,b1-b2 i},{0,b0,b1+b2 i,-b3},{-b3,-b1+b2 i,-b0,0},{-b1-b2 i,b3,0,-b0}}; この積のトレースは、 Tr[sl[a].sl[b]]=4 a0 b0-4 a3 b3+(a1-a2 i) (-b1-b2 i)+(-a1-a2 i) (b1-b2 i)+(a1+a2 i) (-b1+b2 i)+(-a1+a2 i) (b1+b2 i); となります。 また、a・bは、下記になると思います。 a・b={{a0 b0-a1 b1-a2 b2-a3 b3,0,0,0},{0,a0 b0-a1 b1-a2 b2-a3 b3,0,0},{0,0,a0 b0-a1 b1-a2 b2-a3 b3,0},{0,0,0,a0 b0-a1 b1-a2 b2-a3 b3}}; このトレースは、 Tr[a・b]=4 a0 b0-4 a1 b1-4 a2 b2-4 a3 b3; になります。引き算をすると、 Tr[sl[a].sl[b]]-Tr[a・b]=0; となります。 質問1、 Tr[sl[a]sl[b]]=a・bは、Tr[sl[a].sl[b]]-Tr[a・b]=0;でよろしいのでしょうか? 自分では、納得できませんが? 質問2、 sl[a].sl[b]は、多分、非対角成分が0でないはずですが、トレースを取るということは、対角成分のみを拾い出すことになりますが、非対角成分は廃棄して良いのでしょうか?
- Tr[sl[a]sl[b]]=a・bの計算について
Tr[sl[a]sl[b]]=a・bの計算について教えてください。 aのスラッシュをsl[a]、bのスラッシュをsl[b]とすると下記のようになると思います。 sl[a]={{a0,0,a3,a1-a2 i},{0,a0,a1+a2 i,-a3},{-a3,-a1+a2 i,-a0,0},{-a1-a2 i,a3,0,-a0}}; sl[b]={{b0,0,b3,b1-b2 i},{0,b0,b1+b2 i,-b3},{-b3,-b1+b2 i,-b0,0},{-b1-b2 i,b3,0,-b0}}; この積のトレースは、 Tr[sl[a].sl[b]]=4 a0 b0-4 a3 b3+(a1-a2 i) (-b1-b2 i)+(-a1-a2 i) (b1-b2 i)+(a1+a2 i) (-b1+b2 i)+(-a1+a2 i) (b1+b2 i); となります。 また、a・bは、下記になると思います。 a・b={{a0 b0-a1 b1-a2 b2-a3 b3,0,0,0},{0,a0 b0-a1 b1-a2 b2-a3 b3,0,0},{0,0,a0 b0-a1 b1-a2 b2-a3 b3,0},{0,0,0,a0 b0-a1 b1-a2 b2-a3 b3}}; このトレースは、 Tr[a・b]=4 a0 b0-4 a1 b1-4 a2 b2-4 a3 b3; になります。引き算をすると、 Tr[sl[a].sl[b]]-Tr[a・b]=0; となります。 質問1、 Tr[sl[a]sl[b]]=a・bは、Tr[sl[a].sl[b]]-Tr[a・b]=0;でよろしいのでしょうか? 自分では、納得できませんが? 質問2、 sl[a].sl[b]は、多分、非対角成分が0でないはずですが、トレースを取るということは、対角成分のみを拾い出すことになりますが、非対角成分は廃棄して良いのでしょうか?
- 極座標の重積分の範囲について
∬√x dxdyを D:y>=0,x^2+y^2<=2x の範囲で解け、という問題があります。 範囲Dについては、(x-1)^2+y^2<=1と変形されることはすぐにわかったのですが、果たしてこの範囲は、通常の中心が原点の円と考えて積分可能なのでしょうか? 極座標に変換しても、0<=θ<=πまでで、rをどのように範囲をとったらよいのかよくわかりません。 さらに、この問題は極座標に変換しても√rcos(θ)が積分の中に出てきます。いくらがんばっても√cos(θ)の積分が求まりませんでした。 はたしてどのようにとけばよいのでしょうか?よろしくお願いします。
- ベストアンサー
- 数学・算数
- noname#129397
- 回答数8
- 極座標の重積分の範囲について
∬√x dxdyを D:y>=0,x^2+y^2<=2x の範囲で解け、という問題があります。 範囲Dについては、(x-1)^2+y^2<=1と変形されることはすぐにわかったのですが、果たしてこの範囲は、通常の中心が原点の円と考えて積分可能なのでしょうか? 極座標に変換しても、0<=θ<=πまでで、rをどのように範囲をとったらよいのかよくわかりません。 さらに、この問題は極座標に変換しても√rcos(θ)が積分の中に出てきます。いくらがんばっても√cos(θ)の積分が求まりませんでした。 はたしてどのようにとけばよいのでしょうか?よろしくお願いします。
- ベストアンサー
- 数学・算数
- noname#129397
- 回答数8
- 特殊線形群の生成元
n次行列でij成分だけが1、他の成分が0であるものをe(ij)で表しておきます。このとき 行列式が1であるn次実正方行列(すなわち特殊線形群)は{1+te(ij);1は単位行列、tは実数、i≠j、1≦i,j≦n}によって(乗法群として)生成されるでしょうか?またもし生成されるとすれば簡単に証明できるでしょうか?
- 締切済み
- 数学・算数
- ringohatimitu
- 回答数3
- Mathematicaでコンプトン散乱計算をするには
竹内薫先生の『アインシュタインとファインマンの理論を学ぶ本』を買いました。 早速、「場の量子論を使ったコンプトン散乱の計算」の箇所を読んだのですが、さっぱり わかりませんでした。しかし、何か、面白そうな計算であることは、わかりました。 Mathematicaを使用して、上述の「場の量子論を使ったコンプトン散乱の計算」をやってみたいのですが、参考になる本(簡単であること)や既に、Mathematicaを使用して計算したプログラムはないでしょうか? 目的は、ただ「場の量子論を使ったコンプトン散乱の計算」をしたいだけです。場の量子論の途中でガザガザ出てくる式の証明等は全く不要です。計算する式だけがわかればよいのです。
- Mathematicaでコンプトン散乱計算をするには
竹内薫先生の『アインシュタインとファインマンの理論を学ぶ本』を買いました。 早速、「場の量子論を使ったコンプトン散乱の計算」の箇所を読んだのですが、さっぱり わかりませんでした。しかし、何か、面白そうな計算であることは、わかりました。 Mathematicaを使用して、上述の「場の量子論を使ったコンプトン散乱の計算」をやってみたいのですが、参考になる本(簡単であること)や既に、Mathematicaを使用して計算したプログラムはないでしょうか? 目的は、ただ「場の量子論を使ったコンプトン散乱の計算」をしたいだけです。場の量子論の途中でガザガザ出てくる式の証明等は全く不要です。計算する式だけがわかればよいのです。
- Mathematicaでコンプトン散乱計算をするには
竹内薫先生の『アインシュタインとファインマンの理論を学ぶ本』を買いました。 早速、「場の量子論を使ったコンプトン散乱の計算」の箇所を読んだのですが、さっぱり わかりませんでした。しかし、何か、面白そうな計算であることは、わかりました。 Mathematicaを使用して、上述の「場の量子論を使ったコンプトン散乱の計算」をやってみたいのですが、参考になる本(簡単であること)や既に、Mathematicaを使用して計算したプログラムはないでしょうか? 目的は、ただ「場の量子論を使ったコンプトン散乱の計算」をしたいだけです。場の量子論の途中でガザガザ出てくる式の証明等は全く不要です。計算する式だけがわかればよいのです。
- Mathematicaでコンプトン散乱計算をするには
竹内薫先生の『アインシュタインとファインマンの理論を学ぶ本』を買いました。 早速、「場の量子論を使ったコンプトン散乱の計算」の箇所を読んだのですが、さっぱり わかりませんでした。しかし、何か、面白そうな計算であることは、わかりました。 Mathematicaを使用して、上述の「場の量子論を使ったコンプトン散乱の計算」をやってみたいのですが、参考になる本(簡単であること)や既に、Mathematicaを使用して計算したプログラムはないでしょうか? 目的は、ただ「場の量子論を使ったコンプトン散乱の計算」をしたいだけです。場の量子論の途中でガザガザ出てくる式の証明等は全く不要です。計算する式だけがわかればよいのです。
- Mathematicaでコンプトン散乱計算をするには
竹内薫先生の『アインシュタインとファインマンの理論を学ぶ本』を買いました。 早速、「場の量子論を使ったコンプトン散乱の計算」の箇所を読んだのですが、さっぱり わかりませんでした。しかし、何か、面白そうな計算であることは、わかりました。 Mathematicaを使用して、上述の「場の量子論を使ったコンプトン散乱の計算」をやってみたいのですが、参考になる本(簡単であること)や既に、Mathematicaを使用して計算したプログラムはないでしょうか? 目的は、ただ「場の量子論を使ったコンプトン散乱の計算」をしたいだけです。場の量子論の途中でガザガザ出てくる式の証明等は全く不要です。計算する式だけがわかればよいのです。
- Mathematicaでコンプトン散乱計算をするには
竹内薫先生の『アインシュタインとファインマンの理論を学ぶ本』を買いました。 早速、「場の量子論を使ったコンプトン散乱の計算」の箇所を読んだのですが、さっぱり わかりませんでした。しかし、何か、面白そうな計算であることは、わかりました。 Mathematicaを使用して、上述の「場の量子論を使ったコンプトン散乱の計算」をやってみたいのですが、参考になる本(簡単であること)や既に、Mathematicaを使用して計算したプログラムはないでしょうか? 目的は、ただ「場の量子論を使ったコンプトン散乱の計算」をしたいだけです。場の量子論の途中でガザガザ出てくる式の証明等は全く不要です。計算する式だけがわかればよいのです。
- Mathematicaでコンプトン散乱計算をするには
竹内薫先生の『アインシュタインとファインマンの理論を学ぶ本』を買いました。 早速、「場の量子論を使ったコンプトン散乱の計算」の箇所を読んだのですが、さっぱり わかりませんでした。しかし、何か、面白そうな計算であることは、わかりました。 Mathematicaを使用して、上述の「場の量子論を使ったコンプトン散乱の計算」をやってみたいのですが、参考になる本(簡単であること)や既に、Mathematicaを使用して計算したプログラムはないでしょうか? 目的は、ただ「場の量子論を使ったコンプトン散乱の計算」をしたいだけです。場の量子論の途中でガザガザ出てくる式の証明等は全く不要です。計算する式だけがわかればよいのです。
- Mathematicaでコンプトン散乱計算をするには
竹内薫先生の『アインシュタインとファインマンの理論を学ぶ本』を買いました。 早速、「場の量子論を使ったコンプトン散乱の計算」の箇所を読んだのですが、さっぱり わかりませんでした。しかし、何か、面白そうな計算であることは、わかりました。 Mathematicaを使用して、上述の「場の量子論を使ったコンプトン散乱の計算」をやってみたいのですが、参考になる本(簡単であること)や既に、Mathematicaを使用して計算したプログラムはないでしょうか? 目的は、ただ「場の量子論を使ったコンプトン散乱の計算」をしたいだけです。場の量子論の途中でガザガザ出てくる式の証明等は全く不要です。計算する式だけがわかればよいのです。
- 中性子と反中性子の見分け方
陽子-反陽子、電子-陽電子などは電荷の違いによって見分けることができるのはわかるのですが、中性子-反中性子はどうやって見分けるのでしょうか? そもそも見分けることは可能なのでしょうか? 過去ログで反中性子の落下実験が行われたことがある(単なる噂?)というのを見て考えてしまいました。
- Mathematicaでコンプトン散乱計算をするには
竹内薫先生の『アインシュタインとファインマンの理論を学ぶ本』を買いました。 早速、「場の量子論を使ったコンプトン散乱の計算」の箇所を読んだのですが、さっぱり わかりませんでした。しかし、何か、面白そうな計算であることは、わかりました。 Mathematicaを使用して、上述の「場の量子論を使ったコンプトン散乱の計算」をやってみたいのですが、参考になる本(簡単であること)や既に、Mathematicaを使用して計算したプログラムはないでしょうか? 目的は、ただ「場の量子論を使ったコンプトン散乱の計算」をしたいだけです。場の量子論の途中でガザガザ出てくる式の証明等は全く不要です。計算する式だけがわかればよいのです。
- Mathematicaでコンプトン散乱計算をするには
竹内薫先生の『アインシュタインとファインマンの理論を学ぶ本』を買いました。 早速、「場の量子論を使ったコンプトン散乱の計算」の箇所を読んだのですが、さっぱり わかりませんでした。しかし、何か、面白そうな計算であることは、わかりました。 Mathematicaを使用して、上述の「場の量子論を使ったコンプトン散乱の計算」をやってみたいのですが、参考になる本(簡単であること)や既に、Mathematicaを使用して計算したプログラムはないでしょうか? 目的は、ただ「場の量子論を使ったコンプトン散乱の計算」をしたいだけです。場の量子論の途中でガザガザ出てくる式の証明等は全く不要です。計算する式だけがわかればよいのです。
- Mathematicaでコンプトン散乱計算をするには
竹内薫先生の『アインシュタインとファインマンの理論を学ぶ本』を買いました。 早速、「場の量子論を使ったコンプトン散乱の計算」の箇所を読んだのですが、さっぱり わかりませんでした。しかし、何か、面白そうな計算であることは、わかりました。 Mathematicaを使用して、上述の「場の量子論を使ったコンプトン散乱の計算」をやってみたいのですが、参考になる本(簡単であること)や既に、Mathematicaを使用して計算したプログラムはないでしょうか? 目的は、ただ「場の量子論を使ったコンプトン散乱の計算」をしたいだけです。場の量子論の途中でガザガザ出てくる式の証明等は全く不要です。計算する式だけがわかればよいのです。