計算の途中で頭パニック!
(1)
AB=2AC,cosA=9/16の△ABCにおいて、
BCを直径とする半円をBCに関して頂点Aと反対側に作る。
辺BCを2:1に内分する点をPとし、
直線APと半円との交点をQとする。
AQベクトル=αABベクトル+βACベクトルとするとき、
αの値とAP:PQの比を求めよ。
この問題であと少しで解けそうな所までいったんですけど
αとβの2次方程式がでてきて、しかも因数分解できません。
CQ⊥BQを用いてα、βの値を出そうと思って
ABベクトル・ACベクトル=lABl×2lABl×cosA=9/8lABl2乗
lACl2乗=4lABl2乗という風にlABlを基準にして解いたら
α2乗+α(9/4β-17/8)+4β2乗-41/8β+9/8=0
という式がでてきました。
分数が入っていて分かりにくいので頭パニックです。
どこが違っているのか、アドバイス下さい。
(2)
△ABCにおいて、∠Aの2等分線と辺BCの交点をDとし、
その外接円の中心をOとする。
AB=2、AC=3、∠A=θ、1/2ABベクトル=bベクトル、
1/3ACベクトル=cベクトルとするとき、
AOベクトルをbベクトル、cベクトル、θで表せ。
これも途中の式で頭がパニックになりました。
AB、ACの中点をそれぞれM、NとするとOM⊥AM、ON⊥AN
AOベクトル=sbベクトル+tcベクトル(s・tは実数)とおく
lAMl=lANl=lmlとするとlbl=lml、lcl=2/3lmlとかける
bベクトル・cベクトル=2/3lml2乗cosθ
lbl2乗=lml2乗
lcl2乗=4/9lml2乗
以上より
lml2乗(1-s-2/3tcosθ)=0
lml2乗(-scosθ+1-2/3t)=0
それぞれ両辺lml2乗で割ったあとから分からなくなりました。
どこが間違っているのか、アドバイス下さい。