kabaokaba の回答履歴

全2300件中861~880件表示
  • ゲーデルの不完全性定理について

    ゲーデルの不完全性定理について ネットサーフィンをしていたときに、たまたま、ゲーデルの項目を見つけました。 当方、数学は素人なのですが、 ゲーデルの不完全性定理(ある公理系の中には、真偽を明確にできない命題が存在する) を僕たちが生きるこの世界、この宇宙にあてはめて考えると、 この世の中には、論理的には正しいとも間違っているとも証明できないことがらがあるということなのでしょうか。

  • 双対空間と逆行列の関係について

    線形写像f:V→Wに対して、V*からW*(それぞれV,Wの双対空間)の線形写像tfにを考えると、この時tfが転置行列に相当するらしいのですが、なぜそうなるのか分かりません。 V=K^n,W=K^m、f(x)=Ax,Aはm×n行列とした場合に教えてください。

  • こんな問題集ありますか?

    中二です。 私は今、偏差値64.5の高校をねらってます。 偏差値64.5とはどれくらい高いですか? また、偏差値64.5くらいのレベルの 問題集ってありますか?

    • noname#108692
    • 回答数2
  • アフィン空間 ユークリッド空間 ベクトル空間

    アフィン空間についていろいろ勉強しているのですが、なかなかわからなくて・・・もう何度質問したことか>< アフィン空間はベクトル空間ではないと思っているのですが、アフィン空間とベクトル空間が同じになる場合があるのでしょうか? 一次結合の係数和が1の時、アフィン空間=ベクトル空間となるのでしょうか? また、アフィン空間はユークリッド空間から絶対的な原点・座標を取り除いた空間ですよね(wiki参照)。以前の質問で、計量の有無はアフィン空間であるか否かには関係無いとの事でした。 ということは、アフィン空間はベクトル空間ではないが位相空間、計量を定義すれば距離空間となるのでしょうか? 私のイメージでは、 ある集合→(ベクトルを定義)→ベクトル空間→(位相を入れる)→位相空間→(ノルム・内積を定義)→距離空間 なんですが・・・ アフィン空間はこのイメージから外れてしまって良くわからないのです・・・

    • RY0U
    • 回答数4
  • アフィン空間 ユークリッド空間 ベクトル空間

    アフィン空間についていろいろ勉強しているのですが、なかなかわからなくて・・・もう何度質問したことか>< アフィン空間はベクトル空間ではないと思っているのですが、アフィン空間とベクトル空間が同じになる場合があるのでしょうか? 一次結合の係数和が1の時、アフィン空間=ベクトル空間となるのでしょうか? また、アフィン空間はユークリッド空間から絶対的な原点・座標を取り除いた空間ですよね(wiki参照)。以前の質問で、計量の有無はアフィン空間であるか否かには関係無いとの事でした。 ということは、アフィン空間はベクトル空間ではないが位相空間、計量を定義すれば距離空間となるのでしょうか? 私のイメージでは、 ある集合→(ベクトルを定義)→ベクトル空間→(位相を入れる)→位相空間→(ノルム・内積を定義)→距離空間 なんですが・・・ アフィン空間はこのイメージから外れてしまって良くわからないのです・・・

    • RY0U
    • 回答数4
  • アフィン空間 ユークリッド空間 ベクトル空間

    アフィン空間についていろいろ勉強しているのですが、なかなかわからなくて・・・もう何度質問したことか>< アフィン空間はベクトル空間ではないと思っているのですが、アフィン空間とベクトル空間が同じになる場合があるのでしょうか? 一次結合の係数和が1の時、アフィン空間=ベクトル空間となるのでしょうか? また、アフィン空間はユークリッド空間から絶対的な原点・座標を取り除いた空間ですよね(wiki参照)。以前の質問で、計量の有無はアフィン空間であるか否かには関係無いとの事でした。 ということは、アフィン空間はベクトル空間ではないが位相空間、計量を定義すれば距離空間となるのでしょうか? 私のイメージでは、 ある集合→(ベクトルを定義)→ベクトル空間→(位相を入れる)→位相空間→(ノルム・内積を定義)→距離空間 なんですが・・・ アフィン空間はこのイメージから外れてしまって良くわからないのです・・・

    • RY0U
    • 回答数4
  • 代数

    質問です。 無限の要素を持つ巡回群の例って何がありますか??

    • doora88
    • 回答数3
  • 代数

    質問です。 無限の要素を持つ巡回群の例って何がありますか??

    • doora88
    • 回答数3
  • 二項定理(難)問題

    次の式の展開式において、〔〕内の項の係数を求めよ (1) (x-2y+3z)^6 〔x^2y^3z〕 (2) (x^2-3x+2)^5 〔x^3〕 (3) (2x^2-1/x)^6 〔定数項〕 a>0の整数とする。 (x+a)^5を展開した時にx^2の係数が100を超えるためのaの最小値を求めるため、次の問いに答えなさい。 答えまで回答していただきたいです。 よろしくおねがいします (1) (x+a)^5を展開したときにのx^2の係数をaを用いて表しなさい。 (2) x^2の係数が100を超えるためのaの最小値を求めなさい。 n>0を整数とする。(x+1)^nを展開したときにx^3の係数が100を超えるためのnの最小値を求めるため、次の問いに答えなさい。 (1) (x+1)^nを展開したときのx^3の係数をnを用いて表しなさい (2)x^3の係数が100を超えるためのnの最小値を求めなさい

  • 群とか環、体、素イデアルについて

    群とか環、体、素イデアルはかなり大学の数学で理解するようにと重視されてるのですが、これらを知ることで何がどう応用できるのですか? 正直私は群、環を深く学んだからと言って何がどう分かるのか分かりません。とくに正規部分群とかなんのためにあるかも分かりません。 微分積分を深く(私が今後専門とする分野)学ぶのなら、とくに群、環を深く やる必要はないですよね?

    • noname#100530
    • 回答数2
  • 閉集合 閉じている

    閉じていると閉集合って同じ事なのでしょうか? ベクトル空間の定義で、a,b∈V→a+b∈Vとありこれは加法が閉じていることを示しますが、この閉じているというのは閉集合と関係があるのでしょうか? 閉集合は、∀xが集合Uの境界点で、x∈Uの場合です。 閉じていると閉集合は関係あるように思うのですが、どうなのでしょうか? 同じ場合、なぜ2つの言葉で表すのでしょうか?使い分け方などあるのでしょうか?

    • RY0U
    • 回答数4
  • Fxy=Fyx の証明はこれではだめですか?(偏微分の順序交換の証明)

    Fは(x,y)で連続かつx,yについて偏微分可能し、FxyとFyxも(x,y)において存在するとき、Fxy=Fyxとなる。なお、FxyとはFをxについて偏微分して次にyについて偏微分したものとする。 これを示すと Fxy=lim(h→0)1/h{Fy(x+h,y)-Fy(x,y)} Fy=lim(h→0)1/h{F(x,y+h)-F(x,y)}より、 Fxy=lim(h→0)1/h{1/h(F(x+h,y+h)-F(x+h,y)-F(x,y+h)+F(x,y))} 一方、Fyx=lim(h→0)1/h{Fx(x,y+h)-Fx(x,y)}、 Fx=lim(h→0)1/h{F(x+h,y)-F(x,y)}より Fyx=lim(h→0)1/h{1/h(F(x+h,y+h)-F(x,y+h)-F(x+h,y)+F(x,y))} =lim(h→0)1/h{1/h(F(x+h,y+h)-F(x+h,y)-F(x,y+h)+F(x,y))} したがって Fxy=Fyxが成立する。 こうやって示したのですが、ダメですか?

    • noname#96505
    • 回答数7
  • Fxy=Fyx の証明はこれではだめですか?(偏微分の順序交換の証明)

    Fは(x,y)で連続かつx,yについて偏微分可能し、FxyとFyxも(x,y)において存在するとき、Fxy=Fyxとなる。なお、FxyとはFをxについて偏微分して次にyについて偏微分したものとする。 これを示すと Fxy=lim(h→0)1/h{Fy(x+h,y)-Fy(x,y)} Fy=lim(h→0)1/h{F(x,y+h)-F(x,y)}より、 Fxy=lim(h→0)1/h{1/h(F(x+h,y+h)-F(x+h,y)-F(x,y+h)+F(x,y))} 一方、Fyx=lim(h→0)1/h{Fx(x,y+h)-Fx(x,y)}、 Fx=lim(h→0)1/h{F(x+h,y)-F(x,y)}より Fyx=lim(h→0)1/h{1/h(F(x+h,y+h)-F(x,y+h)-F(x+h,y)+F(x,y))} =lim(h→0)1/h{1/h(F(x+h,y+h)-F(x+h,y)-F(x,y+h)+F(x,y))} したがって Fxy=Fyxが成立する。 こうやって示したのですが、ダメですか?

    • noname#96505
    • 回答数7
  • Fxy=Fyx の証明はこれではだめですか?(偏微分の順序交換の証明)

    Fは(x,y)で連続かつx,yについて偏微分可能し、FxyとFyxも(x,y)において存在するとき、Fxy=Fyxとなる。なお、FxyとはFをxについて偏微分して次にyについて偏微分したものとする。 これを示すと Fxy=lim(h→0)1/h{Fy(x+h,y)-Fy(x,y)} Fy=lim(h→0)1/h{F(x,y+h)-F(x,y)}より、 Fxy=lim(h→0)1/h{1/h(F(x+h,y+h)-F(x+h,y)-F(x,y+h)+F(x,y))} 一方、Fyx=lim(h→0)1/h{Fx(x,y+h)-Fx(x,y)}、 Fx=lim(h→0)1/h{F(x+h,y)-F(x,y)}より Fyx=lim(h→0)1/h{1/h(F(x+h,y+h)-F(x,y+h)-F(x+h,y)+F(x,y))} =lim(h→0)1/h{1/h(F(x+h,y+h)-F(x+h,y)-F(x,y+h)+F(x,y))} したがって Fxy=Fyxが成立する。 こうやって示したのですが、ダメですか?

    • noname#96505
    • 回答数7
  • Fxy=Fyx の証明はこれではだめですか?(偏微分の順序交換の証明)

    Fは(x,y)で連続かつx,yについて偏微分可能し、FxyとFyxも(x,y)において存在するとき、Fxy=Fyxとなる。なお、FxyとはFをxについて偏微分して次にyについて偏微分したものとする。 これを示すと Fxy=lim(h→0)1/h{Fy(x+h,y)-Fy(x,y)} Fy=lim(h→0)1/h{F(x,y+h)-F(x,y)}より、 Fxy=lim(h→0)1/h{1/h(F(x+h,y+h)-F(x+h,y)-F(x,y+h)+F(x,y))} 一方、Fyx=lim(h→0)1/h{Fx(x,y+h)-Fx(x,y)}、 Fx=lim(h→0)1/h{F(x+h,y)-F(x,y)}より Fyx=lim(h→0)1/h{1/h(F(x+h,y+h)-F(x,y+h)-F(x+h,y)+F(x,y))} =lim(h→0)1/h{1/h(F(x+h,y+h)-F(x+h,y)-F(x,y+h)+F(x,y))} したがって Fxy=Fyxが成立する。 こうやって示したのですが、ダメですか?

    • noname#96505
    • 回答数7
  • Fxy=Fyx の証明はこれではだめですか?(偏微分の順序交換の証明)

    Fは(x,y)で連続かつx,yについて偏微分可能し、FxyとFyxも(x,y)において存在するとき、Fxy=Fyxとなる。なお、FxyとはFをxについて偏微分して次にyについて偏微分したものとする。 これを示すと Fxy=lim(h→0)1/h{Fy(x+h,y)-Fy(x,y)} Fy=lim(h→0)1/h{F(x,y+h)-F(x,y)}より、 Fxy=lim(h→0)1/h{1/h(F(x+h,y+h)-F(x+h,y)-F(x,y+h)+F(x,y))} 一方、Fyx=lim(h→0)1/h{Fx(x,y+h)-Fx(x,y)}、 Fx=lim(h→0)1/h{F(x+h,y)-F(x,y)}より Fyx=lim(h→0)1/h{1/h(F(x+h,y+h)-F(x,y+h)-F(x+h,y)+F(x,y))} =lim(h→0)1/h{1/h(F(x+h,y+h)-F(x+h,y)-F(x,y+h)+F(x,y))} したがって Fxy=Fyxが成立する。 こうやって示したのですが、ダメですか?

    • noname#96505
    • 回答数7
  • 三角形で1+1=1となる問題?

    昔、中学のときの先生に言われた問題が、いまだに頭の中にひっかかっていますので、どなたか教えてください。 1辺が1mの正三角形があるとします。底辺は1m、2つの斜辺の合計は1+1=2mになります。斜辺の中点を結んだ線で2つ折りにします。  /\ /  \  ̄ ̄ ̄ ̄   ↓   /\/\  ̄ ̄ ̄ ̄ 直線の本数が増えましたが、長さの合計は変わりません。 これを何度も繰り返していくと、小さな山の高さがどんどん小さくなって、最後には底辺と同じ長さ(1+1=1m)になってしまう、というのが問題です。 これは、どう考えたらよいのでしょうか?

    • haru44
    • 回答数9
  • 90°<θ<180°のときのtanθのことについて質問します。

    この画像で m>0のとき直角三角形OP1からtanθ=mっていうのは理解できるのですが m<0のとき直角三角形OP1は角θ含んでないし、 仮にtan(180°-θ)=mよってtanθ=-mと出せても m<0のときtanθ=mと矛盾してしまい、 どうやってこの図からtanθ=mと示すのか分かりません。

    • noname#102828
    • 回答数1
  • 線形代数の証明問題がわかりません

    ベクトルの問題で、自力ではどうにもできない問題があるのでよろしく願いします。 三つのベクトルA,B,Cが同一平面内にあるとき次式が成り立つこと示せ。 1)A・(B×C)=0 2)pA+qB+rC=0 (p,q,rは少なくとも二つは0でない実数) 1)はわかるので2)をよろしくお願いします。

    • oopingg
    • 回答数3
  • texのカウンターについて

    数学の問題を作っているのですが, 問題番号を箇条書きの番号のように表示する方法がわかりません. 問1 ~ 問2 ~ 問3 ~ のように表示させるのに, 番号を自動で振るような方法は存在するのでしょうか? 現在は手動で打ち込んでいるので, 順番を並び替えると, 全ての番号を書きかえる必要があり, それを解決したいと思っています. わかる方よろしくお願い致します.