正方形の外周を正三角形が回る
正三角形が一周するの意味がわからなくて、質問します。
問題は、
正方形ABCDの辺DCと正三角形PQRの辺QRが重なっている。この正三角形を正方形の外周に沿って、すべることなく、矢印の方向(半時計回り)に回転しながら移動するとき、最初の状態になるまで、正三角形は正方形の周りを何周するかという問題です。
移動中、最初の状態のPが右端でQRが垂直という状態になったら一周だと思ったのですが、正三角形の紙を切り出して、正方形の外周を移動させても、そうなるのは1回だけでした。また、正三角形が右に頂点を一つ出し、他の頂点を結べば垂直にした形は、6回現れました。
答えは3周です。解説によれば、
△PQRのどの頂点が正方形ABCDの頂点に重なるかを考える。正三角形と正方形の辺の長さが等しいから、△PQRの頂点が反時計回りの方向に、1つずつ動きながら、正方形の頂点に重なることがわかる。したがって、正方形の周りを正三角形が3周すればよい、と書いあります。
どなたか、正三角形が一周するとは、最初の三角形の状態からどの状態になることかを説明してください、また中学生の知識の範囲での説明をお願いします。