orcus0930 の回答履歴

全221件中181~200件表示
  • 3^(n-1)/3^(n+1)

    3^(n-1)/3^(n+1)がどうして1/9になるのか教えてください。 初歩的な質問ですみません・・・。

  • 数学での質問です。一応背理法です。一緒に悩んでみてください。

    数学で、質問です。ちょっと悩んでみてください。 x=0.9999999999999999999999999・・・・・・・・・999999999 という循環小数と仮定する。 10x=9.99999999999・・・・・・・・・・・・・・・・9999999999999 であり、 10x-x=9.99・・・・・・9999-0.9999999・・・999 ∴是を解いて、x=1となり、これはx=0.999・・・999の循環小数であることに矛盾する故に、x=1という抽象数の存在に矛盾するので、数学は成り立たないのではない。 この証明は正しいですか?

  • 場合の数について

    大学受験の数学の問題でわからないものがありました。 2000年の東京大学の入試問題です。 次の条件を満たす正の整数全体の集合をSとおく。 各桁の数字は互いに異なり、どの2つの桁の数字の和も9にならない。 ただし、Sの要素は10進法で表す。また、1桁の正の整数はSに含まれるものとする。 (1)Sの要素でちょうど4桁のものは何個あるか。 (2)小さい方から数えて2000番目のSの要素を求めよ。 解答は、 (1)1728個 (2)8695 です。 解説は(1)について、「9・8・6・4個」と書いてありました。 考えてみたもののわかりません。 考え方を教えてください。 よろしくお願いします。

    • 8888809
    • 回答数4
  • 場合の数について

    大学受験の数学の問題でわからないものがありました。 2000年の東京大学の入試問題です。 次の条件を満たす正の整数全体の集合をSとおく。 各桁の数字は互いに異なり、どの2つの桁の数字の和も9にならない。 ただし、Sの要素は10進法で表す。また、1桁の正の整数はSに含まれるものとする。 (1)Sの要素でちょうど4桁のものは何個あるか。 (2)小さい方から数えて2000番目のSの要素を求めよ。 解答は、 (1)1728個 (2)8695 です。 解説は(1)について、「9・8・6・4個」と書いてありました。 考えてみたもののわかりません。 考え方を教えてください。 よろしくお願いします。

    • 8888809
    • 回答数4
  • 1/(1-x)のマクローリン級数を求めそれを使ってx^2/(3-x)のマクローリン級数を求めてください。

    1/(1-x)のマクローリン級数を求めそれを使ってx^2/(3-x)のマクローリン級数を求めてください。途中式もお願いします

  • 0の0乗は1、にしたい(続き)

    http://oshiete1.goo.ne.jp/qa4347011.html の続きです。 0の0乗の値について、不定だとか未定義だとかの意見があります。 でも、1と定義しても無矛盾だし、1以外では矛盾が生じます。 そこで、べき乗(累乗)の定義を  x^0=1  x^n=x^(n-1)×x (nは自然数) としてしまえば、0^0は当然1になります。 #負の整数乗、有理数乗、実数乗などへの拡張は、従来のような方法で行われるとします。 この定義の仕方には、問題があるのでしょうか? なお、常識的には…という話は、遠慮願います。 #Wikipediaも変わりますので。 これまでの議論で主張したこと: (1) 従来のべき乗の定義は、1から始まるので不自然。加法や乗法は0から始まる。 (2) 従来のべき乗の定義との違いは、0^0の値についてだけである。 (3) 0及び正の整数乗は、すべての実数に対して計算できる。負の整数乗は正の整数乗の逆数として計算できる。(0のべき乗以外) (4) 0^y=0という式はy<0で成立しない。それをy=0まで拡張するのは不自然。 (5) 0^0=0は、関数0^yについて、y=0で連続性が破綻しないから不適当。 (6) lim[x→0,y→0]x^yは不定であるが、0^0=1と矛盾しない。 (7) x^y形式の連続な式で、x=0、y=0の時、その値が1以外に定まる式は存在しない。 (8) 1である根拠は、0^0=0^(-0)=1/0^0。 たぶん、このどれかが成立しなければ、最初の定義は怪しくなります。 #(7)は、表現に不備がある可能性があります。

    • fusem23
    • 回答数49
  • 0の0乗は1、にしたい(続き)

    http://oshiete1.goo.ne.jp/qa4347011.html の続きです。 0の0乗の値について、不定だとか未定義だとかの意見があります。 でも、1と定義しても無矛盾だし、1以外では矛盾が生じます。 そこで、べき乗(累乗)の定義を  x^0=1  x^n=x^(n-1)×x (nは自然数) としてしまえば、0^0は当然1になります。 #負の整数乗、有理数乗、実数乗などへの拡張は、従来のような方法で行われるとします。 この定義の仕方には、問題があるのでしょうか? なお、常識的には…という話は、遠慮願います。 #Wikipediaも変わりますので。 これまでの議論で主張したこと: (1) 従来のべき乗の定義は、1から始まるので不自然。加法や乗法は0から始まる。 (2) 従来のべき乗の定義との違いは、0^0の値についてだけである。 (3) 0及び正の整数乗は、すべての実数に対して計算できる。負の整数乗は正の整数乗の逆数として計算できる。(0のべき乗以外) (4) 0^y=0という式はy<0で成立しない。それをy=0まで拡張するのは不自然。 (5) 0^0=0は、関数0^yについて、y=0で連続性が破綻しないから不適当。 (6) lim[x→0,y→0]x^yは不定であるが、0^0=1と矛盾しない。 (7) x^y形式の連続な式で、x=0、y=0の時、その値が1以外に定まる式は存在しない。 (8) 1である根拠は、0^0=0^(-0)=1/0^0。 たぶん、このどれかが成立しなければ、最初の定義は怪しくなります。 #(7)は、表現に不備がある可能性があります。

    • fusem23
    • 回答数49
  • 0の0乗は1、にしたい(続き)

    http://oshiete1.goo.ne.jp/qa4347011.html の続きです。 0の0乗の値について、不定だとか未定義だとかの意見があります。 でも、1と定義しても無矛盾だし、1以外では矛盾が生じます。 そこで、べき乗(累乗)の定義を  x^0=1  x^n=x^(n-1)×x (nは自然数) としてしまえば、0^0は当然1になります。 #負の整数乗、有理数乗、実数乗などへの拡張は、従来のような方法で行われるとします。 この定義の仕方には、問題があるのでしょうか? なお、常識的には…という話は、遠慮願います。 #Wikipediaも変わりますので。 これまでの議論で主張したこと: (1) 従来のべき乗の定義は、1から始まるので不自然。加法や乗法は0から始まる。 (2) 従来のべき乗の定義との違いは、0^0の値についてだけである。 (3) 0及び正の整数乗は、すべての実数に対して計算できる。負の整数乗は正の整数乗の逆数として計算できる。(0のべき乗以外) (4) 0^y=0という式はy<0で成立しない。それをy=0まで拡張するのは不自然。 (5) 0^0=0は、関数0^yについて、y=0で連続性が破綻しないから不適当。 (6) lim[x→0,y→0]x^yは不定であるが、0^0=1と矛盾しない。 (7) x^y形式の連続な式で、x=0、y=0の時、その値が1以外に定まる式は存在しない。 (8) 1である根拠は、0^0=0^(-0)=1/0^0。 たぶん、このどれかが成立しなければ、最初の定義は怪しくなります。 #(7)は、表現に不備がある可能性があります。

    • fusem23
    • 回答数49
  • 0の0乗は1、にしたい(続き)

    http://oshiete1.goo.ne.jp/qa4347011.html の続きです。 0の0乗の値について、不定だとか未定義だとかの意見があります。 でも、1と定義しても無矛盾だし、1以外では矛盾が生じます。 そこで、べき乗(累乗)の定義を  x^0=1  x^n=x^(n-1)×x (nは自然数) としてしまえば、0^0は当然1になります。 #負の整数乗、有理数乗、実数乗などへの拡張は、従来のような方法で行われるとします。 この定義の仕方には、問題があるのでしょうか? なお、常識的には…という話は、遠慮願います。 #Wikipediaも変わりますので。 これまでの議論で主張したこと: (1) 従来のべき乗の定義は、1から始まるので不自然。加法や乗法は0から始まる。 (2) 従来のべき乗の定義との違いは、0^0の値についてだけである。 (3) 0及び正の整数乗は、すべての実数に対して計算できる。負の整数乗は正の整数乗の逆数として計算できる。(0のべき乗以外) (4) 0^y=0という式はy<0で成立しない。それをy=0まで拡張するのは不自然。 (5) 0^0=0は、関数0^yについて、y=0で連続性が破綻しないから不適当。 (6) lim[x→0,y→0]x^yは不定であるが、0^0=1と矛盾しない。 (7) x^y形式の連続な式で、x=0、y=0の時、その値が1以外に定まる式は存在しない。 (8) 1である根拠は、0^0=0^(-0)=1/0^0。 たぶん、このどれかが成立しなければ、最初の定義は怪しくなります。 #(7)は、表現に不備がある可能性があります。

    • fusem23
    • 回答数49
  • 0の0乗は1、にしたい(続き)

    http://oshiete1.goo.ne.jp/qa4347011.html の続きです。 0の0乗の値について、不定だとか未定義だとかの意見があります。 でも、1と定義しても無矛盾だし、1以外では矛盾が生じます。 そこで、べき乗(累乗)の定義を  x^0=1  x^n=x^(n-1)×x (nは自然数) としてしまえば、0^0は当然1になります。 #負の整数乗、有理数乗、実数乗などへの拡張は、従来のような方法で行われるとします。 この定義の仕方には、問題があるのでしょうか? なお、常識的には…という話は、遠慮願います。 #Wikipediaも変わりますので。 これまでの議論で主張したこと: (1) 従来のべき乗の定義は、1から始まるので不自然。加法や乗法は0から始まる。 (2) 従来のべき乗の定義との違いは、0^0の値についてだけである。 (3) 0及び正の整数乗は、すべての実数に対して計算できる。負の整数乗は正の整数乗の逆数として計算できる。(0のべき乗以外) (4) 0^y=0という式はy<0で成立しない。それをy=0まで拡張するのは不自然。 (5) 0^0=0は、関数0^yについて、y=0で連続性が破綻しないから不適当。 (6) lim[x→0,y→0]x^yは不定であるが、0^0=1と矛盾しない。 (7) x^y形式の連続な式で、x=0、y=0の時、その値が1以外に定まる式は存在しない。 (8) 1である根拠は、0^0=0^(-0)=1/0^0。 たぶん、このどれかが成立しなければ、最初の定義は怪しくなります。 #(7)は、表現に不備がある可能性があります。

    • fusem23
    • 回答数49
  • 円周上の座標を求める方法を、具体的な数値を込みでお教えください

    正円の半径と角度がわかっている状態で、円周上のx座標、y座標を求めることは可能でしょうか? たとえば、半径=150の場合、0度なら(150,0)、90度なら(0,150)、180度なら(300,0)、270度なら(0,-150) となりますが、1度、2度…といった、直角でない角度の場合にどのように遷移してゆくか、解りません。 0度から360度までの座標を追ってゆく必要があるのですが、お手上げ状態です。 三角関数で解けるとは思うのですが、高校時代の数学がさっぱりで、色々な本を読んでも計算方法が解りません。 ここの質問もいくつも目を通しましたが、πやラジアンが具体的にどんな数値なのか…が判然としなくて、解けないのです。 もし、噛み砕いて解説可能なかた、いらっしゃいましたらお教えいただけますと助かります。 何卒、よろしくお願い申し上げます。

    • noname#79933
    • 回答数7
  • トランプを使った確率の問題で行き詰っています・・・

    数学の問題なんですけれども、「52枚のトランプから20枚のカードを無作為に選んだ時、(ポーカーでいう)スリーカードが何組入っている確率が最も高いか」という問題の答えがわかりません・・・ どなたか解ける方お願いいたします。ちなみに文系の大学生です・・・

  • 0の0乗は1、にしたい(続き)

    http://oshiete1.goo.ne.jp/qa4347011.html の続きです。 0の0乗の値について、不定だとか未定義だとかの意見があります。 でも、1と定義しても無矛盾だし、1以外では矛盾が生じます。 そこで、べき乗(累乗)の定義を  x^0=1  x^n=x^(n-1)×x (nは自然数) としてしまえば、0^0は当然1になります。 #負の整数乗、有理数乗、実数乗などへの拡張は、従来のような方法で行われるとします。 この定義の仕方には、問題があるのでしょうか? なお、常識的には…という話は、遠慮願います。 #Wikipediaも変わりますので。 これまでの議論で主張したこと: (1) 従来のべき乗の定義は、1から始まるので不自然。加法や乗法は0から始まる。 (2) 従来のべき乗の定義との違いは、0^0の値についてだけである。 (3) 0及び正の整数乗は、すべての実数に対して計算できる。負の整数乗は正の整数乗の逆数として計算できる。(0のべき乗以外) (4) 0^y=0という式はy<0で成立しない。それをy=0まで拡張するのは不自然。 (5) 0^0=0は、関数0^yについて、y=0で連続性が破綻しないから不適当。 (6) lim[x→0,y→0]x^yは不定であるが、0^0=1と矛盾しない。 (7) x^y形式の連続な式で、x=0、y=0の時、その値が1以外に定まる式は存在しない。 (8) 1である根拠は、0^0=0^(-0)=1/0^0。 たぶん、このどれかが成立しなければ、最初の定義は怪しくなります。 #(7)は、表現に不備がある可能性があります。

    • fusem23
    • 回答数49
  • 0の0乗は1、にしたい(続き)

    http://oshiete1.goo.ne.jp/qa4347011.html の続きです。 0の0乗の値について、不定だとか未定義だとかの意見があります。 でも、1と定義しても無矛盾だし、1以外では矛盾が生じます。 そこで、べき乗(累乗)の定義を  x^0=1  x^n=x^(n-1)×x (nは自然数) としてしまえば、0^0は当然1になります。 #負の整数乗、有理数乗、実数乗などへの拡張は、従来のような方法で行われるとします。 この定義の仕方には、問題があるのでしょうか? なお、常識的には…という話は、遠慮願います。 #Wikipediaも変わりますので。 これまでの議論で主張したこと: (1) 従来のべき乗の定義は、1から始まるので不自然。加法や乗法は0から始まる。 (2) 従来のべき乗の定義との違いは、0^0の値についてだけである。 (3) 0及び正の整数乗は、すべての実数に対して計算できる。負の整数乗は正の整数乗の逆数として計算できる。(0のべき乗以外) (4) 0^y=0という式はy<0で成立しない。それをy=0まで拡張するのは不自然。 (5) 0^0=0は、関数0^yについて、y=0で連続性が破綻しないから不適当。 (6) lim[x→0,y→0]x^yは不定であるが、0^0=1と矛盾しない。 (7) x^y形式の連続な式で、x=0、y=0の時、その値が1以外に定まる式は存在しない。 (8) 1である根拠は、0^0=0^(-0)=1/0^0。 たぶん、このどれかが成立しなければ、最初の定義は怪しくなります。 #(7)は、表現に不備がある可能性があります。

    • fusem23
    • 回答数49
  • 0の0乗は1、にしたい(続き)

    http://oshiete1.goo.ne.jp/qa4347011.html の続きです。 0の0乗の値について、不定だとか未定義だとかの意見があります。 でも、1と定義しても無矛盾だし、1以外では矛盾が生じます。 そこで、べき乗(累乗)の定義を  x^0=1  x^n=x^(n-1)×x (nは自然数) としてしまえば、0^0は当然1になります。 #負の整数乗、有理数乗、実数乗などへの拡張は、従来のような方法で行われるとします。 この定義の仕方には、問題があるのでしょうか? なお、常識的には…という話は、遠慮願います。 #Wikipediaも変わりますので。 これまでの議論で主張したこと: (1) 従来のべき乗の定義は、1から始まるので不自然。加法や乗法は0から始まる。 (2) 従来のべき乗の定義との違いは、0^0の値についてだけである。 (3) 0及び正の整数乗は、すべての実数に対して計算できる。負の整数乗は正の整数乗の逆数として計算できる。(0のべき乗以外) (4) 0^y=0という式はy<0で成立しない。それをy=0まで拡張するのは不自然。 (5) 0^0=0は、関数0^yについて、y=0で連続性が破綻しないから不適当。 (6) lim[x→0,y→0]x^yは不定であるが、0^0=1と矛盾しない。 (7) x^y形式の連続な式で、x=0、y=0の時、その値が1以外に定まる式は存在しない。 (8) 1である根拠は、0^0=0^(-0)=1/0^0。 たぶん、このどれかが成立しなければ、最初の定義は怪しくなります。 #(7)は、表現に不備がある可能性があります。

    • fusem23
    • 回答数49
  • 公式の使い分け

    こんにちは。 確率には主に組み合わせと並び替えの公式があるとおもいます。この2つは大丈夫なのですが、他の場合がいまいちわかりません。 例えばQ:4枚のカードの中から2枚同時にカードを引き、同じ絵柄がえでる確率は? この場合、公式を使わないで地道に計算すると答えはでるのですが、これも組み合わせの問題なのでCをつかって解こうとするのですが、解けません。 公式が使えない場合というときもあるのでしょうか?それとも正解が思い浮かばなかっただけですかね・・・?独立の確率や同時じゃない場合は例外の式があったようなのは覚えているのですが・・・。 どなたかお願いします_(._.)_

    • M-dlion
    • 回答数1
  • 0の0乗は1、にしたい

    0の0乗の値について、過去に色々な質問がありますが、結論としては不定というのが多いみたいです。 でも、素朴な疑問として、1として問題があるのかな、と思いました。 そこで、べき乗の定義を  x^0=1  x^n=x^(n-1)×x (n≧1) としてしまえば、0^0は当然1になります。 この定義の仕方には、問題があるのでしょうか?

    • fusem23
    • 回答数29
  • 0の0乗は1、にしたい

    0の0乗の値について、過去に色々な質問がありますが、結論としては不定というのが多いみたいです。 でも、素朴な疑問として、1として問題があるのかな、と思いました。 そこで、べき乗の定義を  x^0=1  x^n=x^(n-1)×x (n≧1) としてしまえば、0^0は当然1になります。 この定義の仕方には、問題があるのでしょうか?

    • fusem23
    • 回答数29
  • 媒介変数の積分について

    tが-2≦t≦2の範囲で変化するとき、x=t^2-4 y=t^3-4t で表される曲線を考える。 この曲線によって囲まれる部分の面積を求めよ。 最後の積分の範囲の部分がわかりません。 x軸対称より S=2int _{-4}^{0} ydx =2int _{0}^{-2} (t^3-4t)2tdt (1)S=2int~とS=int~の違いが分かりません。x軸対称なのはわかりますが、S=int _{-4}^{0} ydxだけでも求める面積を表していると思うのですが… (2)なぜ0~-2になるのでしょうか? xの範囲は-4→0だからx=t^2-4に代入すると、0→+-2 となってしまいます。どちらをとればいいのか分かりません。 以上2点よろしくお願いします。 (2)

  • 角度を求める問題

    http://amaterus.jp/cgi-bin/zukei/zbbs.cgi の掲示板、No.671 に掲載した問題が解けません。 補助線を何本か引き、考えてみましたが、解ける見通しさえたちません。知り合いから出題されたのですが、その知り合いも答えを聞かずじまいだそうです。補助線を何本か引き、正三角形を作って解くと、ヒントをもらったそうです。CADで図形を描き、角度を測ると51.・・・°となるので、答えは分数かと思います。 ご教授願います。

    • ktkt22
    • 回答数3