postro の回答履歴
- 対数の計算
対数の計算で、a^logax=x となりますが、 a^-logax はどのように計算すれば良いのでしょうか。 マイナス対数乗の解き方を教えてください。
- ベストアンサー
- 数学・算数
- hideki1549
- 回答数2
- 式を成り立たせる自然数a.b実数χの求め方
入試問題のため解答がなく、考えても解決できずこちらにお願いしたいと思います。どうぞよろしくお願い致します。 次の式を成り立たせる自然数a.b と実数χ を求めよ。 「方程式 χ4-10χ2+1=0 の解 χ の値は 0<χ<1 の範囲にあるという。 この方程式は(χ2-1)2=aχ2 と変形できるので、χ の値を考慮すれば χ2-1=-2√bχ となる。 2次方程式の解の公式を用い、χ の値を考慮すれば解 χが求まる。」 私は χ4-2χ2+1-8χ2=0 の形にしてから (χ2-1)2=8χ2 として、ここから2乗をくずし χ2-1=√8χ χ2-1=2√2χ ・・となりました。 問題文の式と照らし合わせると、-2√bχ とあり、-(マイナス)の付く理由が分かりません。 ぜひ求め方を教えてください。
- 倍音・・
吹奏楽部の者です。吹奏楽で・・・ 倍音って、音程がカンペキにぴったり合ってないと きこえないんでしょうか? 音程が合ってなさそうなときにB♭を吹いてて、Fがきこえるとか よくあるんですが・・
- 締切済み
- クラシック・オーケストラ
- brass25
- 回答数3
- 三角関数の問題
aは実数の定数、0≦θ≦2πの範囲において、 cos2θ-4(a+1)cosθ-4a-1=0 を満たす異なるθの個数を求めよ。 という問題で、 cos^2θ-2(a+1)cosθ-2a-1=0 t=cosθとおく t^2-2(a+1)t-2a-1=0 判別式は d/4=(a+2)^2-2 グラフを図示する (1)-2-√2<a<-2+√2 ではtは解なし (2)a=-2-√2,-2+√2 でtはそれぞれ1つずつ解を持つ (3)a<-2-√2,-2+√2<a でtはそれぞれ2つずつ解を持つ ここまでは分かるのですが、-1≦t≦1の処理とtの値に応じたθの 個数の求め方などが良く分かりません。 分かる方お願いします。
- 高(1)の数Aの問題です(>_<)
円盤を6等分した各部分を、6種類の色すべてを 使って塗り分ける方法は何通りあるか。 という問題なんですけど・・・ 私は6!で求めて720かなと思ったんですが 答えは(6ー1)!で120でした(-_-) どうして6!ではダメなのか分かりません(>_<) どなたかアドバイスよろしくお願いします。
- 不等式の問題がわかりません
(1) 2x+3y≦6n, x≧0, y≧0 (aは正の整数) を満たす点P(x,y)で、x,yがどちらも整数であるもの(格子点)の個数を求めよ。 (2) 2x+3y+6z≦6n, x≧0, y≧0 z≧0 (aは正の整数) を満たす点P(x,y,z)で、x,y,zがすべて整数であるもの(格子点)の個数を求めよ。 という問題で、 (1)は不等式を図示して y=k(k=1,2・・・)とy=-(2/3)x+2n の交点は( 3n-(3/2)k , k ) 交点が整数であるために2k=mとおくと、 y=m上の格子点の数は 3n-3m+1 よって、1≦y≦2nにおいて、y=(偶数)上の格子点の数は Σ[m=1,n](3n-3m+1) =(3/2)n^2-(1/2)n また図から、y=2k-1上の格子点の数は y=2k=m上の格子点の数より1多いので、 1≦y≦2nにおいて、y=(奇数)上の格子点の数は Σ[m=1,n]{3n-3m+2} =(3/2)n^2+(1/2)n y=0上の格子点の数は3n+1より、 求める値は (3/2)n^2-(1/2)n+(3/2)n^2+(1/2)n+3n+1 =3n^2+3n+1 ここまでは分かりました。 (2)はどうやっていいか手の付け方も分かりません。 (1)を使って簡単にして解くような気はします(分かりませんが)。 分かる方お願いします。
- m:nの比に外分計算するときの-符号はどちらにつける?
内分点と外分点を求める、例の公式がありますが、外分の時、マイナスの符号はどちらにつけても良い、と数学の先生が言ってみえました。 具体的な数値で、実際に自分で計算してみて、今のところは全て一致しますが、一般的な解を出せておらず、未だにはっきりと納得いっていません。 m:nに外分するとき、-符号はどちらにつけてもいいのでしょうか? お願いいたします。
- ベストアンサー
- 数学・算数
- coffeebeat
- 回答数4
- 不等式の問題がわかりません
(1) 2x+3y≦6n, x≧0, y≧0 (aは正の整数) を満たす点P(x,y)で、x,yがどちらも整数であるもの(格子点)の個数を求めよ。 (2) 2x+3y+6z≦6n, x≧0, y≧0 z≧0 (aは正の整数) を満たす点P(x,y,z)で、x,y,zがすべて整数であるもの(格子点)の個数を求めよ。 という問題で、 (1)は不等式を図示して y=k(k=1,2・・・)とy=-(2/3)x+2n の交点は( 3n-(3/2)k , k ) 交点が整数であるために2k=mとおくと、 y=m上の格子点の数は 3n-3m+1 よって、1≦y≦2nにおいて、y=(偶数)上の格子点の数は Σ[m=1,n](3n-3m+1) =(3/2)n^2-(1/2)n また図から、y=2k-1上の格子点の数は y=2k=m上の格子点の数より1多いので、 1≦y≦2nにおいて、y=(奇数)上の格子点の数は Σ[m=1,n]{3n-3m+2} =(3/2)n^2+(1/2)n y=0上の格子点の数は3n+1より、 求める値は (3/2)n^2-(1/2)n+(3/2)n^2+(1/2)n+3n+1 =3n^2+3n+1 ここまでは分かりました。 (2)はどうやっていいか手の付け方も分かりません。 (1)を使って簡単にして解くような気はします(分かりませんが)。 分かる方お願いします。
- 絶対値があるときって
C:y=1/2|x(x-7)|上の点(3,6)における接線をlとし、C,lによって囲まれる部分の面積の和を求めよ。 この問題なんですが、接線の方程式を使ってlの方程式をy=1/2x+9/2と求めました。 「C,lによって囲まれる部分の面積の和」とは、どの範囲の面積を求めればよいのでしょうか? 絶対値がある方程式なので、Cのグラフは負の部分を折り返した形にして、交点を求めて積分してみましたが、答えと合いませんでした。 どこか間違っているところがあるかもしれませんが、この問題の解き方のヒントをください。お願いします。
- 絶対値があるときって
C:y=1/2|x(x-7)|上の点(3,6)における接線をlとし、C,lによって囲まれる部分の面積の和を求めよ。 この問題なんですが、接線の方程式を使ってlの方程式をy=1/2x+9/2と求めました。 「C,lによって囲まれる部分の面積の和」とは、どの範囲の面積を求めればよいのでしょうか? 絶対値がある方程式なので、Cのグラフは負の部分を折り返した形にして、交点を求めて積分してみましたが、答えと合いませんでした。 どこか間違っているところがあるかもしれませんが、この問題の解き方のヒントをください。お願いします。
- 対数
14桁の16進数の最大値は10進数で現すと何桁か?ただしlog10^2=0.301 という問題の途中式なのですが。 回答では10^n-1≦16^14-1<10^n 常用対数をとるとn-1<14log10^16≦nとなっています。 どうして≦と<がさかさまになったのかが分かりません… 教えていただけると嬉しいです。
- ベストアンサー
- 数学・算数
- sephiroth15873
- 回答数1
- 三角形の辺の値を求める
基礎的な問題なのかもしれないのですが、 三角形の辺の値を求める問題が解けません・・・。 教科書と問題集を見ても見つからず、困ってしまいましたので ここに質問させていただきます。 画像がなく、説明だけになってしまうため 解りにくいかと思いますがどなたか教えてくださると嬉しいです。 問 ABCの三角形があり、AからBCに線を引き BD=DC=xとします。 AB=3 AD=5 AC=9のときxを求めよ。 という問題です 内角の二等分線と比の関係、 外角の二等分線と比の関係は解るのですが この問題は角は関係ないみたいですよね? どう考えれば良いのか、 考え方だけでも結構ですので どなたかアドバイス等よろしくおねがいします。
- 簡単な円の方程式
問題をやったのですが答えが合わないので、どこが間違っているか教えてください。 1)x^2+y^2-6x-8y=0があらわす円の中心と半径。 (x^2-6x-9+9)+(y^2-8y-16+16)=0 (x-3)^2+(y-4)^2=7 と自分で解いたのですが、本の答えは(3,4) r=5と書いてありました。 2)x^2+y^2+2x+3y+1=0 (x^2+2x+1-1)+(y^2+3y-(9/4)+(9/4)+1=0 (x^2+2x+1)+(y^2+3y-(9/4))=-9/4 でここからわかりません。9/4をどう因数分解をしたらよいか。 これらの円の方程式は、(半分)^2の方法でやりました
- 重複組み合わせの問題
『同じ形の4個のさいころを投げるとき,目の出方は何通りあるか?』という問題があり, 解答は,『6+4-1C4=126』とありました. ということは,重複組み合わせの考え方を当てはめると 『6個の中から重複を許して4つ選ぶ』ということになりますが ここでは何の6つから4つ選ぶということになるのでしょうか?さいころの目だとするとなんかおかしいような気がします. 詳説をお願いします.