構成できるチーム数
ある部署では、1年間通じて活動するプロジェクトチーム(以下、チーム)をいくつか構成することになっているが、これらのチームは次のア、イ、ウの要件に従って構成されている。
ア チームごとの多様性を発揮させるため、構成メンバーが全員同じチームは作らない。
イ チーム間の情報共有のため、どの二つのチームの構成メンバーを見ても、必ず共通する人が少なくとも1人はいる。
ウ チームは1名で構成してもよい。
この部署には昨年8名が所属していたが、今年は1名増えて9名となった。このとき、今年構成できるチームの数は昨年よりいくつ増えたか。
答えは次のようになっています。
昨年の8名の中に、どのチームにも共通する人が少なくとも1人(この人は、結局どのチームにも所属していることになる)はいることから、他の7名について考えると、どの人もチームの構成メンバーに入るか入らないかで2通りの選択肢があるので、全部で2^7=12通りのチームができることになる。
今年は1名増えて9名になれば、同様にして2^8=256通りのチームができるから、昨年に比べて、256-128=128通り増えたことになる。
この説明の1文目で、「どのチームにも所属している」というのが理解できないでおります。イの条件から来ている結論だと思うのですが、どうしてどのチームにも所属していることがいえるのでしょうか。
お礼
どうもありがとうございました。