選択公理は∀A,∃S[((φ≠∀E∈2^A∧E_1,E_2∈2^A(E_1≠E_2))→E_1∩E_2=φ) → ∀E∈2^A,∃1x;(x∈E∧x∈S)]?
[問]整列定理(任意の集合Aには整列順序が存在する)が成立⇒選択公理
を示したく思ってます。
選択公理は
∀T,∃S[((φ≠∀E∈T∧E_1,E_2∈T(E_1≠E_2))→E_1∩E_2=φ) → ∀E∈T,∃1x;(x∈E∧x∈S)] …(1)
と書けると思います(∃1は一意的存在の意味)。
意味は任意の集合Tに対し,Tの互いに素な任意の元Eに対し,∃1x∈E∩Sなる集合Sが存在する。
と習いました。
解答は
[証]
A上の整列順序を仮定する。2^A\{0}の元xに対し,xはAの部分集合だから最小元がある。これをf(x)とすればfは選択関数である。(終)
となっていたのですがつまり,(1)に沿って解釈すると
T:=2^AとするとS:={minE∈A;E∈{E∈{E_λ∈2^A;E_λは互いに素(λ∈Λ)}}}…(2)
と採ればminE∈Eにもなっていてこれでいいのだと解釈しましたが
選択公理は文章説明すれば任意の集合Tからある集合Sを選び出せれる,つまりS⊂Tとなる集合Sを決めれる。
というのを目にします。
しかし,(1)ではS⊂TではなくS∈Tの関係になっています。
そうしますと,
(1)は∀A,∃S[((φ≠∀E∈2^A∧∀E_1,E_2∈2^A(E_1≠E_2))→E_1∩E_2=φ) → ∀E∈2^A,∃1x;(x∈E∧x∈S)]と書き直せば(2)はS⊂Aになっていて辻褄が合うと思います。
選択公理は∀A,∃S[((φ≠∀E∈2^A∧E_1,E_2∈2^A(E_1≠E_2))→E_1∩E_2=φ) → ∀E∈2^A,∃1x;(x∈E∧x∈S)]と書き直してもいいのでしょうか?
お礼
お礼が遅くなってすみません。VivienneWestwoodではないみたいです。でも回答ありがとうございました。