LATEXの問題が解けません…
学校の課題で図のような文章を作るため何時間もかけているのですが、どうしてもできずにいます
規定は10pt 二段組a4jで、文書スタイルはjsarticleです
途中までですが、
\documentclass[10pt,twocolumn,a4j]{jarticle}
\title{Sample document of\LaTeXe{}including equations}
\author{ここに番号}
\date{\today}
\maketitle
\begin{document}
\section{Quadratic formula}
We learned, in junior high school, roots of a quadratic
equation
\[
ax^2+bx+c = 0
\]
called "quadratic formula".
\begin{align}
\x = \frac{-b±\sqrt{b^2-4ac}}{2a}
\end{align}
In high school, we learned another formula which
gives roots of a quadratic equation
\[
ax2+2b0x+c = 0.
\]
The formula can be derived from Eq. (1),
\begin{align}
x = \frac{-2b' ±\sqrt{\left(2b\right)'^2-4ac}}{2a}\\
= \frac{-2b' ±\sqrt2{b'^2-ac}}{2a}\\
=\frac{-b' ±\sqrt2{b'^2-ac}}{a}
\end{align}
The formula (Eq. (1)) is proved by the method of
completing the square.
\begin{align}
ax^2+bx+c=0
\end{align}
\begin{align}
a\left(x+\frac{b}{2a}\right)^2-\frac{b^2}{4a}+c=0
\end{align}
\begin{align}
a\left(x+\frac{b}{2a}\right)=\frac{b^2}{4a}-c
\end{align}
\begin{align}
\left(x+\frac{b}{2a}\right)=±\sqrt{\frac{b^2}{4a}}{-c}
\end{align}
\section{Discriminant}
Because the nature of a quadratic polynomial is de-
termined by the square root of the quadratic formula,
we call them
\[
( D = b^2-4ac, D0 = b'^2-ac)
\]
"discrimi-nant" of a quadratic polynomial. The number of real
root are determined by the sign of the discriminant.
(see Table 1.)
このようにやっています
この後の書き方、途中の箇所の修正をお願いします
一応途中まで終わらせてから\end{document}を入れ、実行したのですが
エラーが出てしまいました(始めたばかりのペーペーなので、あまりよく出来ないのです)
明日が提出の期限なので、よろしくお願い致します…