sa10no の回答履歴
- 結晶中の電子密度に何故、逆格子が現れるのですか?
結晶は周期的に原子が並びどの原子も性質は同じで、電子密度も周期的に変化するから、電子密度は平面波(三角関数)で表されるのですよね?周期関数はフーリエ級数展開できるのは分かるのですが、そこでどうして平面波の式に逆格子ベクトルが出てくるのかが分からないです。 電子密度(電荷密度)は単位体積当たりに何クーロンの電荷があるかなので単位は[C/m^3]だと思うのですが、第(1)、(2)、(3)式とどこにも電子の量を表す物が無いような気がします。どうして電子の数の情報が無いのにその結晶中の電子の密度nが求まるのか、さらにはどうして逆格子ベクトルが出てくるのかがずっと理解できないままです。第(3)式の1/Vは体積で割っているのは分かりますが、なぜ積分の中身が電荷量に相当するのですか?そもそもn_Gとはどういう物理量なんでしょうか。 イメージでも良いので物理学的に教えてもらえないでしょうか。
- ベストアンサー
- 物理学
- kanagawa_people
- 回答数7
- 結晶中の電子密度に何故、逆格子が現れるのですか?
結晶は周期的に原子が並びどの原子も性質は同じで、電子密度も周期的に変化するから、電子密度は平面波(三角関数)で表されるのですよね?周期関数はフーリエ級数展開できるのは分かるのですが、そこでどうして平面波の式に逆格子ベクトルが出てくるのかが分からないです。 電子密度(電荷密度)は単位体積当たりに何クーロンの電荷があるかなので単位は[C/m^3]だと思うのですが、第(1)、(2)、(3)式とどこにも電子の量を表す物が無いような気がします。どうして電子の数の情報が無いのにその結晶中の電子の密度nが求まるのか、さらにはどうして逆格子ベクトルが出てくるのかがずっと理解できないままです。第(3)式の1/Vは体積で割っているのは分かりますが、なぜ積分の中身が電荷量に相当するのですか?そもそもn_Gとはどういう物理量なんでしょうか。 イメージでも良いので物理学的に教えてもらえないでしょうか。
- ベストアンサー
- 物理学
- kanagawa_people
- 回答数7
- 物理II:気体の問題について
こちら(↓)の画像を見ながら答えて頂けたらと思います。 [参考URL] http://p.tl/QOnd 図のように、滑らかに動くピストンを備えた容器が水平面上にあり、2つの室には理想気体(等量)が入っており、特に左側の室にはばねが自然長で入っているものとします。また、ピストンと容器は断熱材で出来ており、設置されているヒーターの体積は無視できるものとします。はじめ、2室の気体の圧力、温度、体積は等しく、特に体積は V でした。 この後ヒーターにより気体を加熱して室Aの体積を3V/2とした後ヒーターのスイッチを切り、ピストンに小さな穴をあけました。 今回質問したいのは、この後気体がどうなるかということです。 具体的には、この後2室の気体の圧力が等しくなるため、ばねの伸びは0となり、体積はVに戻るというのですが、そうすると、この時の気体の圧力を P , 左室の気体の物質量と温度をそれぞれ n , t , 右室の気体の物質量と温度をそれぞれ N , T , 気体定数を R としますと、状態方程式より、 PV = nRt かつ PV = NRT よって nRt = NRT 整理して nt = NT ここで、最初どちらの室にも等量の気体が入っており、かつ、ピストンに穴をあけたことによって、左室の気体が右室に流れ込んだと考えられますから、 n ≠ N ∴ t ≠ T つまり、左室と右室で温度が違うということになります。これが不思議なのです。 そもそも私は、2室の圧力が等しくなったのは、ピストンに穴をあけたことにより気体が単一のものとなった(単一気体の圧力が部分的に高いとか低いとかいったことは考えられず、気体のどの部分をとっても圧力が等しくなった)からと考えていたのですが、そうすると、温度も2室で等しくなければならないと思うのです(温度も同様に、単一気体で部分的に高いとか低いとかいったことが考えられない。ピストンに穴があいている以上、2室で熱が伝播し最終的に等しくなるのでは)。 以上、私の質問を纏めますと、 1.何故2室の温度が異なるのか 2.何故2室の圧力が等しくなるのか(私の解釈は合っているか) この2点です。宜しくお願い致します。
- 誘導起電力
大学受験生です。 正方形の導体棒(左上から頂点をABCDとする、一辺あたり抵抗r)があり、頂点ABに抵抗のない導線を接続しそこに抵抗Rをつける。そして正方形の中の磁束密度を変化させていき、長方形ABCDに誘導起電力VがA→B→C→Dと発生するとする。 とあり、この回路に流れる電流を求めるのですが、キルヒホッフの法則をA→B→抵抗に適応するとき、抵抗Rに流B→Aと流れる電流をI、AB(抵抗r)にA→Bと流れる電流をiとするとRI+ri=0となっていました。 恐らく解答は正しいのでしょうが、僕がわからないのは、RI+ri=0のところになぜ誘導起電力が関わってこないのかということです。正方形ABCDにVかかっているなら一辺あたりV/4かかっているみたいに正方形ABCDに均一にかかってないのです。つまりRI+ri=V/4にどうしてならないかということです。
- 誘導起電力
大学受験生です。 正方形の導体棒(左上から頂点をABCDとする、一辺あたり抵抗r)があり、頂点ABに抵抗のない導線を接続しそこに抵抗Rをつける。そして正方形の中の磁束密度を変化させていき、長方形ABCDに誘導起電力VがA→B→C→Dと発生するとする。 とあり、この回路に流れる電流を求めるのですが、キルヒホッフの法則をA→B→抵抗に適応するとき、抵抗Rに流B→Aと流れる電流をI、AB(抵抗r)にA→Bと流れる電流をiとするとRI+ri=0となっていました。 恐らく解答は正しいのでしょうが、僕がわからないのは、RI+ri=0のところになぜ誘導起電力が関わってこないのかということです。正方形ABCDにVかかっているなら一辺あたりV/4かかっているみたいに正方形ABCDに均一にかかってないのです。つまりRI+ri=V/4にどうしてならないかということです。
- 結晶中の電子の密度とフーリエ変換
結晶物理学をほぼ独学で学んでいる途中なのですが、なぜ結晶中の電子密度が下の式のように表されるのか理解できなくて困ってます。 結晶は周期的に並ぶので、Tを格子並進操作とすれば電子密度はn(r)=n(r+T)が成り立つのは分かります。ですがなぜ位置xの電子密度が下の第1式のようになるのか理解できません。周期的だからといっても平面波の式を使って表される理由や、第2式のように突然平面波に逆格子ベクトルが出てくるのか分かりません。それにシグマ記号の下にあるpは何を意味しているのかも分からないです。参考書には「pは整数」と書いてあるだけでどういう量でどこからやって来たのでしょうか。同様に第2式のシグマ記号の下の逆格子ベクトルGも何故あんな所にいるのでしょうか。数学ではシグマの下は「k=0」などの和を取り始める初項を意味する物が入りますが、Gの文字だけがあるだけでどのように和を取っているのですか? そもそもどうしてフーリエ変換で電子密度が表せるのでしょうか。フーリエ変換はある程度やりましたが、数学的な計算処理が主で実際の物理量を表現できるという原理が想像できません。またそれぞれの式のnの表している量は具体的に何においての密度なのでしょうか。添え字があるのでそれに対応させてはいるのでしょうが、本にはn_pやn_Gの説明がありません。n_Gも電子の密度を表しているのだと思いますが、Gは何を意味しているのですか? 質問 (1)第1式のように平面波の式とフーリエ展開を用いて電子密度を表せる理由 (2)pという文字の意味と、シグマ記号の下にあるpやGは何を意味しているのか (3)n_pとn_Gは何を表しているのか。第3式はどういった物理量を体積分しているのか (1)、(3)に関しては数式より、おおまかなイメージで説明してもらえると有り難いです。詳しい方がいらしたら教えて欲しいです。お願いします。m(__)m
- ベストアンサー
- 物理学
- kanagawa_people
- 回答数2
- 物理学の方法論についての質問
物理学の方法論について質問が有ります。 物理学は定量化出来ない自然現象に対しては、どの様にアプローチをかけるのでしょうか? 物理学は自然現象の解明を試みる学問であって、物理学=数学ではないし、ましてや数理物理学は一つの方法論にすぎません。 別に数式を使って説明しなければならない理由も義務も無いと思うのですが。 宜しくお願いします。
- [解析力学] 作用Sの変分 t→t+δt の導出
ラグラジアンL(q,q~,t)を用いて作用S=∫(t0~t)dt'L(q,q~,t')とする。 ただしqは一般化座標、q~はdq/dt(一般化速度)、tは時間であり、 Lはラグランジュ方程式 (d/dt)(∂L/∂q~)-(∂L/∂q)=0 を満たすものとする。 このとき、 (1)時刻tでのq(t)を q→q+δq としたときの変分δS を一般化運動量∂L/∂q~=p とδqを用いて表せ。 (2)位置qとなるtを t→t+δt としたときの変分δS を L、p 、q~、δqを用いて表せ。 ただしq(t0)は固定 という問題について、 (1)はδS=pδq が求まったのですが、(2)の解法がわかりません。 調べるとδS=(L-pq~)δt のようになるらしいのですが・・・ 解法、もしくはヒントを教えていただきたく思います。 δS=(∂S/∂t)δt+(∂S/∂q)δq+(∂S/∂q~)δq~
- 力学-重心の問題について-
質点系の重心の問題について質問させていただきます。 同じ大きさの水槽A,Bを台車にのせる。水槽A,Bの中心から台車の中心Pまでの距離はともにaである。台車は水平面上をなめらかに動くとする。はじめ台車は静止しており、台車の中心は、水平方向にとられたx軸の原点Oと一致していたとする。水槽Aに質量mの水を入れ、これを台車の上にいる人間が水槽Bに移動するとする。台車、水槽、人間の質量が水の質量に比べて無視できるとする。Aの水を半分Bに移したとき、台車の中心Pの座標x1を求めよ。 ※右の水槽がA、左の水槽がBです。 問題の解説に「重心の位置は不変だから」と書かれていたのですが、この解説がいまいち理解できません。この解説通りに解くと、答えは出たのですが、なぜ重心の位置は不変なのでしょうか? 回答よろしくお願いいたします。
- 電磁気学に関しての問題です。
無限に広い平面の導体表面に電荷が一様な密度σで分布しているとき、電界の強さEと電位Vを導体表面からの距離xの関数として求めよ。ただし、距離xは表面から真空中に向かう方向を正方向として、導体の電位はV_0とする。 という問題なのですが、距離xの関数として求めるにはどうしたらよいのですか? 確か無限の平面の場合、ガウスの法則を使って、E=σ/2ε_0となったような気がするのですが、この式にはxが含まれていません。 どのようにして求めるのですか? ラプラス方程式を使っては求められないですよね?
- [解析力学] 作用Sの変分 t→t+δt の導出
ラグラジアンL(q,q~,t)を用いて作用S=∫(t0~t)dt'L(q,q~,t')とする。 ただしqは一般化座標、q~はdq/dt(一般化速度)、tは時間であり、 Lはラグランジュ方程式 (d/dt)(∂L/∂q~)-(∂L/∂q)=0 を満たすものとする。 このとき、 (1)時刻tでのq(t)を q→q+δq としたときの変分δS を一般化運動量∂L/∂q~=p とδqを用いて表せ。 (2)位置qとなるtを t→t+δt としたときの変分δS を L、p 、q~、δqを用いて表せ。 ただしq(t0)は固定 という問題について、 (1)はδS=pδq が求まったのですが、(2)の解法がわかりません。 調べるとδS=(L-pq~)δt のようになるらしいのですが・・・ 解法、もしくはヒントを教えていただきたく思います。 δS=(∂S/∂t)δt+(∂S/∂q)δq+(∂S/∂q~)δq~
- 保存力とポテンシャルについての問題
原点x=0の付近に存在する質点に作用する 保存力F(x)による一次元ポテンシャルV(x)について、 原点付近の領域で考える。 ただし、V(x)はx=0で極小値0をとり、V(x)はどこにおいても連続、有限で、 何回でも微分可能な関数であるとする。 (1)F(x)とV(x)の関係式を書け (2)質点が力を受けない位置を答えよ。 (3)V(x)はx=0付近で下記の式のように展開して表される。 V(x)=Σ[n=0~∞] (1/n!)・(x^n)・( V(0)(n)) (※V(0)(n)はn回微分の意味です) xが十分に小さい領域において、 V(x)のべき展開におけるxの3次以上の項が無視できるとき、V(x)を求めよ。 (4)原点に質量mの質点があり、質点の位置を原点から僅かに変位させた時の 微小振動について考える。質点の運動方程式を(3)の近似を用いて表せ。 (5)(4)における微小振動の周期を求めよ。 (3)までは自力で何とか考えたのですが答えが無いため自信がありません…。 お手数ですが、(1)から(5)へ至るための解きかたを教えて頂けないでしょうか? どうか宜しくお願いします。
- 電磁気について
電磁気について質問させていただきます。 電位の計算で少し混乱してしまったのですが、点電荷がr=0の点にあったとして、r=r0における電位は無限遠点を電位の基準とすれば、 V = -∫[∞→r0] vec(E)・vec(dr) となると思うのですが、これを計算する際に図のように∞からr0まで積分するので、改めて考えたところ vec(dr) = (-ir)dr ではないのかと、思ってしまったのですが、-irとならないのはなぜでしょうか? 私の解釈が間違えていると思うのですが、どこで間違えているのでしょうか? ※vec()はベクトル、irはr方向の単位ベクトルを表します。 回答よろしくお願いいたします。
- 力学の問題の解答で下記の点がわかりません。
力学の問題の解答で、理解できないところがあるので教えていただけませんか。 問題は下記の通りです。 【共通の固定軸のまわりに角速度ω1,ω2(ω1≠ω2)で回転している剛体(慣性モーメントはそれぞれI1, I2)が急に連結されて1つの剛体になる場合について、以下の問い((1)~(4))に答えよ。 (1)連結前の全体の運動エネルギーはいくらか。 (2)連結後の剛体の角速度はいくらか。 (3)連結後の全体の運動エネルギーはいくらか。 (4)連結によって全体の運動エネルギーが減ることを示せ。】 この問題の解答は以下のようになっていました。 【(1) 慣性モーメントは、回転運動における回転しづらさのようなもので、直線運動に対する質量に対応する。 運動エネルギー=(1/2)(慣性モーメント)×(角速度)^2 なので、 E=(1/2)I1(ω1)^2+(1/2)I2(ω2)^2...答 (2) 角運動量の保存より (角運動量)=(慣性モーメント)×(角速度)...直線運動での質量×速度に対応 慣性モーメントは和になります。 もとめる角速度をωとして I1ω1+I2ω2=(I1+I2)ω ω=(I1ω1+I2ω2)/(I1+I2)...答 (3) (1)と同様 E=(1/2)(I1+I2)ω^2 =(1/2)(I1+I2)(I1ω1+I2ω2)^2/(I1+I2)^2 =(1/2)(I1ω1+I2ω2)^2/(I1+I2)...答 (4) (1)の運動エネルギーをEi, (3)の運動エネルギーをEfとし、Ef/Eiを求めます(初状態Initial,終状態Final)。 Ef/Ei =(I1ω1+I2ω2)^2/(I1+I2)・1/(I1(ω1)^2+I2(ω2)^2) =(I1ω1+I2ω2)^2/{(I1+I2)・(I1(ω1)^2+I2(ω2)^2)} =(I1^2・ω1^2+2I1I2ω1ω2+I2^2・ω2^2)/{I1^2・ω1^2+I1I2・ω1^2+I1I2・ω2^2+I2^2・ω2^2} 分子-分母 =2I1I2ω1ω2-(I1I2・ω1^2+I1I2・ω2^2) =I1I2(2ω1ω2-ω1^2-ω2^2) =-I1I2(ω1-ω2)^2 <0...慣性モーメントは(質量)×(回転軸からの距離)に対応するため、正 分母は慣性モーメントと角速度の平方との積の和なので、正 従って、分子<分母、分母>0なので、 Ef/Ei<1 Ef<Eiで、運動エネルギーが減少している。】 この問題の解答を見ていて思ったのですが、 (4)連結によって全体の運動エネルギーが減ることを示せ。 という問いで 分子-分母 =2I1I2ω1ω2-(I1I2・ω1^2+I1I2・ω2^2) =I1I2(2ω1ω2-ω1^2-ω2^2) =-I1I2(ω1-ω2)^2 <0 この時点で、Ef/Ei<1となって、連結によって全体の運動エネルギーは減るという題意は示されていると思うのですが、以下の操作は一体何のために行っているのでしょうか? よろしければ教えていただけないでしょうか? 【慣性モーメントは(質量)×(回転軸からの距離)に対応するため、正 分母は慣性モーメントと角速度の平方との積の和なので、正 従って、分子<分母、分母>0なので、 Ef/Ei<1 Ef<Eiで、運動エネルギーが減少している。】
- ベストアンサー
- 物理学
- happy_lucky3368
- 回答数1
- 量子数 意味
量子力学を勉強中です 量子数というのがいっぱい出てきます。 主量子数 軌道角運動量量子数 磁気量子数 方位量子数 スピン量子数 などなどです。 それぞれの意味を色々調べたのですが、いまいちしっくりくるというかイメージがわく説明がありませんでした。 どなたか一部でもいいので形式的な説明でイメージがつくような説明をしていただけないでしょうか? もうひとつスピンについてですが、 スピンが2つ以上の時に右回り左回りを形式的に決めるというのを読みました。 授業などでスピンという言葉が出てくるときに大体スピン=1/2なのですがどうしてでしょう? なぜ、-1/2や 3/2や整数ではないのでしょうか?扱っている物質により異なるとは思うのですが、大体1/2となっているので不思議です。 これもどなたか教えてください。
- 締切済み
- 物理学
- noname#161541
- 回答数3
- 衝撃力(撃力)の単位について
一端をピンで固定した棒を倒した時の最大衝撃力(ピーク衝撃力)を計算したいのですが、自分で調べてみたら短い時間にかかる衝撃力(撃力)は力積から求める事がわかりました。 ですが衝撃力の単位がわからず困っています。 力なのでNであったり、力積のN・sであったり、Gであったり・・・ Gというのは重力加速度9.8m/s^2を1Gと定義したものですよね? つまりただの加速度ですよね? 衝撃力(撃力)の単位は何故バラバラなのでしょうか? どれが正しい単位なのでしょうか? またN→GやG→Nの変換はどのように計算すればよろしいでしょうか? よろしくお願いいたします。
- 衝撃力(撃力)の単位について
一端をピンで固定した棒を倒した時の最大衝撃力(ピーク衝撃力)を計算したいのですが、自分で調べてみたら短い時間にかかる衝撃力(撃力)は力積から求める事がわかりました。 ですが衝撃力の単位がわからず困っています。 力なのでNであったり、力積のN・sであったり、Gであったり・・・ Gというのは重力加速度9.8m/s^2を1Gと定義したものですよね? つまりただの加速度ですよね? 衝撃力(撃力)の単位は何故バラバラなのでしょうか? どれが正しい単位なのでしょうか? またN→GやG→Nの変換はどのように計算すればよろしいでしょうか? よろしくお願いいたします。