データのカーブフィッティングについて
(x,y)の組み合わせのデータが数多くあり、y=a+bx+cx^2..という曲線をフィットさせることを考えます。係数a, b, cを求めるということです。エクセルとか科学ソフトに入っているものと思います。
この係数の決め方は、実際にはどのような方針なのしょうか。例えば、最小二乗法のように誤差を調べて、その誤差の式をa, b, cで偏微分して0として3つの式を立て、それを解いてa, b, cを求めるというようなことでしょうか。それはダメなんじゃないかと思うのですが。
y(x,z)=a+bx+czで、x, zが独立ならそれがやれるのであり、この場合、z=x^2なのでzのxに対する独立性に問題があるからなのですが。どうでしょうか。
試しにy=1.5x^2 でxに乱数を与えて計算して(x, y)の組み合わせを数多く作成し、模擬データとしてy=a+bx+cx^2のa, b, cを推定してa=b=0, c=1.5がしっかり算出されるものでしょうか。y=1.5x^2 で乱数で発生したデータであっても低次のy=a + bxという式で最小二乗法を使えばa, b(いずれも非0)の結果が出ますね。そこでもう1つ高次の項 cx^2を付けて推定したら先のa, bが変更を受けてa, bが0でc=1.5となる結果が出てくるものでしょうか。
よろしくお願いします。
お礼
ちょっとセル数を食うのが難ですけど,この方法が一番楽でした. 一度設定を組んでしまえば,修正や変更もOKですし.