DSPlabo001 の回答履歴
- にゃんこ先生の自作問題、Buffonの針を正方形タイルに変えたら確率は?
にゃんこ先生といいます。次のようにゃビュホンの針と呼ばれる問題が知られています。 (1)大きにゃ紙に間隔がdの平行線をたくさん引き、長さkの針をばらばらに落としたとき、 針が平行線と交わる確率pはp=2k/πd とにゃる。 (2)では、大きにゃ紙に間隔がdの平行線をたくさん引き、一辺の長さkの正方形タイルをばらばらに落としたとき、 正方形タイルが平行線と交わる確率はどうにゃるのでしょうか? (3)また、大きにゃ紙に間隔がdの平行線を縦横に格子状にたくさん引き、長さkの針をばらばらに落としたとき、 針が格子線と交わる確率はどうにゃるのでしょうか? (4)さらに、大きにゃ紙に間隔がdの平行線を縦横に格子状にたくさん引き、一辺の長さkの正方形タイルをばらばらに落としたとき、 正方形タイルが格子線と交わる確率はどうにゃるのでしょうか? 必要であれば、針や正方形タイルは十分に小さいものと考えてください。
- ベストアンサー
- 数学・算数
- nyankosens
- 回答数3
- にゃんこ先生の自作問題、Buffonの針を正方形タイルに変えたら確率は?
にゃんこ先生といいます。次のようにゃビュホンの針と呼ばれる問題が知られています。 (1)大きにゃ紙に間隔がdの平行線をたくさん引き、長さkの針をばらばらに落としたとき、 針が平行線と交わる確率pはp=2k/πd とにゃる。 (2)では、大きにゃ紙に間隔がdの平行線をたくさん引き、一辺の長さkの正方形タイルをばらばらに落としたとき、 正方形タイルが平行線と交わる確率はどうにゃるのでしょうか? (3)また、大きにゃ紙に間隔がdの平行線を縦横に格子状にたくさん引き、長さkの針をばらばらに落としたとき、 針が格子線と交わる確率はどうにゃるのでしょうか? (4)さらに、大きにゃ紙に間隔がdの平行線を縦横に格子状にたくさん引き、一辺の長さkの正方形タイルをばらばらに落としたとき、 正方形タイルが格子線と交わる確率はどうにゃるのでしょうか? 必要であれば、針や正方形タイルは十分に小さいものと考えてください。
- ベストアンサー
- 数学・算数
- nyankosens
- 回答数3
- にゃんこ先生の自作問題、3次方程式を作る関数
はじめてにゃ。にゃんこ先生といいます。自作問題です。 にゃにかある方程式があり、解を2つ持つとします。さらに、 x=αが解のときx=-b/(α+a)も解だったとします。 このとき、 x=-b/(α+a)が解にゃので、 x=-b/{-b/(α+a)+a) =-b(α+a)/{-b+a(α+a)} ={-bα-ab}/{aα+a^2-b)} も解です。解は2つにゃので、x=αは2つ目の解か3つ目の解に一致します。 α=-b/(α+a)のとき、 α^2+aα+b=0 α={-bα-ab}/{aα+a^2-b)}のとき、 {-bα-ab}/{aα+a^2-b)}=α -bα-ab=aα^2+(a^2-b)α aα^2+a^2α+ab=0 α^2+aα+b=0 これらのことは、おおまかには、 x=αが解のときx=-b/(α+a)も解となる解2つの方程式は、2次方程式x^2+ax+b=0に限られることを意味します。 では、x=αが解のときx=f(α)も解となる解3つの方程式が、3次方程式x^3+ax^2+bx+c=に限られるようにゃf(α)を教えてください。
- ベストアンサー
- 数学・算数
- nyankosens
- 回答数4
- 項目の中で最高値が複数出た場合の優勢の値の計算方法
例えば、以下のようなデータがあります。 AからCは項目です。1から5はカウント数です。 50、45などはデータの測定値です。 A B C 1 50 45 35 2 80 80 15 3 50 50 50 4 20 50 40 5 60 35 65 この場合、「2」の「A」「B」は同じ最高値です。 また、「3」は「A」「B」「C」全て同じ測定値です。 通常なら、「最高値のカウント数/総カウント数(1から5なのでこの場合、5)」でそれぞれ「A」「B」「C」の「優勢率」を計算するのですが、AからCの中で複数最高値が出た場合、どのような計算で優勢率を決めたらよいでしょうか? 回答よろしくお願いします。
- 次元に関する質問です
仮定の話で、仮に現在の次元(n次元とします)にそれより更に高い次元(n+とでもしておきますね)が無理矢理介入した場合(仮定の話にしても突飛過ぎますが)、n次元でn+が存在することは可能なのでしょうか? 簡単に言ってしまえば仮に三次元人の我々(或いは四次元人)が、二次元の世界に入れたとして、その二次元の世界、及びそこに無理矢理介入した三次元人、介入された二次元人にどうのような影響があるのか予測されることを教えて頂きたいんですけど 無理矢理な上に説明下手でスイマセン・・・
- 次元に関する質問です
仮定の話で、仮に現在の次元(n次元とします)にそれより更に高い次元(n+とでもしておきますね)が無理矢理介入した場合(仮定の話にしても突飛過ぎますが)、n次元でn+が存在することは可能なのでしょうか? 簡単に言ってしまえば仮に三次元人の我々(或いは四次元人)が、二次元の世界に入れたとして、その二次元の世界、及びそこに無理矢理介入した三次元人、介入された二次元人にどうのような影響があるのか予測されることを教えて頂きたいんですけど 無理矢理な上に説明下手でスイマセン・・・
- 次元に関する質問です
仮定の話で、仮に現在の次元(n次元とします)にそれより更に高い次元(n+とでもしておきますね)が無理矢理介入した場合(仮定の話にしても突飛過ぎますが)、n次元でn+が存在することは可能なのでしょうか? 簡単に言ってしまえば仮に三次元人の我々(或いは四次元人)が、二次元の世界に入れたとして、その二次元の世界、及びそこに無理矢理介入した三次元人、介入された二次元人にどうのような影響があるのか予測されることを教えて頂きたいんですけど 無理矢理な上に説明下手でスイマセン・・・
- 次元に関する質問です
仮定の話で、仮に現在の次元(n次元とします)にそれより更に高い次元(n+とでもしておきますね)が無理矢理介入した場合(仮定の話にしても突飛過ぎますが)、n次元でn+が存在することは可能なのでしょうか? 簡単に言ってしまえば仮に三次元人の我々(或いは四次元人)が、二次元の世界に入れたとして、その二次元の世界、及びそこに無理矢理介入した三次元人、介入された二次元人にどうのような影響があるのか予測されることを教えて頂きたいんですけど 無理矢理な上に説明下手でスイマセン・・・
- 次元について
前に知り合いからこんな事を質問されて、それにうまく答えることが出来ませんでした。 人間に観測できる次元は時間的概念を取り入れた3次元+1次元ってのは普通に納得が行くわけですけども、5次元(4次元+1)以上になると観測できない、とされています。 そこまではイイのですけども、そこからその知り合いが言うには、もう一つの次元に「空間密度(?)」的なものは考えられないの?と聞かれたわけです。 確かにそれは縦、横、高さといった物と同じような属性を持った物だとは感じます。 しかも視覚的には観測し辛いとしても、不可能だとも思いません。 あーなるほど。とは言いつつ、でも実際は間違ってるんだと思うわけです。 でもそれをうまく否定できないのです。 そこで皆さんの意見を聞かせて貰いたわけです。 このもう一つの次元で「空間密度(?)」的なもの、と言う考え方についてどういうお考えを持たれますでしょうか?