leigeのプロフィール
- ベストアンサー数
- 11
- ベストアンサー率
- 45%
- お礼率
- 0%
- 登録日2005/01/28
- ラグランジュの乗数法での極値の求め方
宜しくお願い致します。 [問]ラグランジュの乗数法をを使って、x^2+y^2=1の条件下でf(x,y)=xyの極値を調べよ。 [解] 『定理(ラグランジュの乗数)g(x,y)=0のもとに、f(x,y)の極値を考える。この条件付極値を与える点(a,b)がg(x,y)=0の特異点でなければ(a,b)は連立方程式 g(x,y)=0 ∂/∂x{f(x,y)+λg(x,y)}=0 ∂/∂y{f(x,y)+λg(x,y)}=0 の解の中から得られる。』 そして、 『f(x,y)の特異点とは 「fx∈Rでない または fy∈Rでない」か「fx=fy=0」なる点』 なのでこれを利用するとまず連立方程式は (∂/∂x{f(x,y)+λg(x,y)}=)y+2λx=0…(1) (∂/∂y{f(x,y)+λg(x,y)}=)x+2λy=0…(2) x^2+y^2=1…(3) となり、(1)-(2)から (x-y)(1-2λ)=0 λ=1/2の時はxとyの値が定まらないのでλ≠1/2とすると x=yで(3)よりx=y=±1/√2 (複合同順) しかし、解答には (1/√2,1/√2) (1/√2,-1/√2) (-1/√2,1/√2) (-1/√2,-1/√2) の4つになっています。 何処らへんから間違っているのでしょうか???
- 「x^2/36+y^2/64=1となるとき、xyの最大値を求めよ。」という問題の考え方
「x^2/36+y^2/64=1となるとき、xyの最大値を求めよ。」 という問題があるテストで出たのですが、いまいち考え方がわかりません。 自分の考えは、 「1/2+1/2=1よりx^2=18、y^2=32となるのでx=±3√2、y=±4√2となる。 上記のとき、最大値をとるのはx=3√2、y=4√2のときである。 したがって、xyの最大値は3√2・4√2=24となる。」 という感じなのですが、正直答えが合っているのかもわかりません。 仮に合っているとしても、なんとなくしっくりこないものがあります。 こういう問題の考え方で、いい方法はどんなものなのでしょうか?
- 実数でもできる複素数積分
(1+sinθ)/(5+4cosθ)を0から2πまで積分しなさいという問題なんですが、実数で積分するのは難しいのでこれを複素数を使って積分します。 留点がz=-1/2となってRes(-1/2)を求めてそれに2πiをかけて積分をしたんですが答えがπ(4/3-i)になりました。答えにiが出てきてしまいました。これは明らかに間違ってますよね?(1+sinθ)/(5+4cosθ)の積分は実数で表されるはずなんですが、どうしても計算がうまくいきません。 よろしくお願いいたします。
- 定義から導関数を求める
定義1 I=(a,b) a<b f;I→R(実数),x0∈I に対してfはx0で微分可能 ⇔ ∃α∈R(実数):f(x)=f(x0)+α(x-x0)+o(x-x0) (x→x0) 定義2 fはI上で微分可能 ⇔ f'はIの任意の点で微分可能。このときf';I∈x0→f'(x)∈R(実数)なる函数が定まる。これを導関数と言う。 微分の定義に基づいて、次の導関数を求めよ。 f(x)=exp(ax) (a∈R\{0}) o(g(x))=f(x)⇔lim[x→x0]f(x)/g(x)を用いるのでしょうか?どんな風に解答すればいいのか分かりません。よろしくお願いします。