mixchann の回答履歴

全13件中1~13件表示
  • 条件付き極値の問題

    一応検索はしたんですが、似たようなものでももっと難しい問題しかなかったので質問させていただきました。重複あったら申し訳ありません。 条件付極値の問題なのですが、 x^2+y^2=1のとき、関数z=x*yの最大値と最小値、およびそれらを取る点を求めよ というものです。もう少し簡単なのはできたんですが、これは結果に文字が残ったりしてうまくいかないんです。よろしくお願いします。

    • sazxdew
    • 回答数5
  • 空間ベクトルについてです。

    x-3y+z=4 2x-y+z=2 x+2y=-2 これら面の交点を見つけなければいけません。 答えは、x/2=(y+1)/(-1)=(z-1)/(-5)です。 行列ではなくて、消去法を使わなければいけないのですが、その解き方が分かりません。 分かる方いらっしゃいましたら教えて頂けますでしょうか?

  • 方程式の整数解

    ”rを自然数とする。 連立方程式 x^2+y^2+z^2=1/3(r^2+2)…(1) x+y+z=r…(2) の整数解を決定せよ。” という問題です。 僕は (2)を(1)に代入して 3(x^2+y^2+z^2)=(x+y+z)^2+2=x^2+y^2+z^2+2xy+2yz+2zx+2 として、さらに同値変形で (x-y)^2+(y-z)^2+(z-x)^2=1 としました。 x-y、y-z、z-x は全て整数で、 (x-y)+(y-z)+(z-x)=0 であることから x-y=1,y-z=0,z-x=-1 となります。(x,y,zの対称性からこの場合だけ考えれば十分) これからx,y,zは一般にtを実数として x=t+1 y=z=t となります。 これと x+y+z=r から t=1/3(r-1) となったので、r≡1(mod.3)のときのみ題意を満たす(x,y,z)は存在して {x,y,z}={1/3(r+2),1/3(r-1),1/3(r-1)} である。 としました。 自分でいうのも何ですが、解法があまりにも巧すぎて、他の問題で使えそうにありません。 もっと自然な発想で解くことはできないでしょうか? よろしくお願いします。

    • nabla
    • 回答数6
  • 方程式の整数解

    ”rを自然数とする。 連立方程式 x^2+y^2+z^2=1/3(r^2+2)…(1) x+y+z=r…(2) の整数解を決定せよ。” という問題です。 僕は (2)を(1)に代入して 3(x^2+y^2+z^2)=(x+y+z)^2+2=x^2+y^2+z^2+2xy+2yz+2zx+2 として、さらに同値変形で (x-y)^2+(y-z)^2+(z-x)^2=1 としました。 x-y、y-z、z-x は全て整数で、 (x-y)+(y-z)+(z-x)=0 であることから x-y=1,y-z=0,z-x=-1 となります。(x,y,zの対称性からこの場合だけ考えれば十分) これからx,y,zは一般にtを実数として x=t+1 y=z=t となります。 これと x+y+z=r から t=1/3(r-1) となったので、r≡1(mod.3)のときのみ題意を満たす(x,y,z)は存在して {x,y,z}={1/3(r+2),1/3(r-1),1/3(r-1)} である。 としました。 自分でいうのも何ですが、解法があまりにも巧すぎて、他の問題で使えそうにありません。 もっと自然な発想で解くことはできないでしょうか? よろしくお願いします。

    • nabla
    • 回答数6
  • 複素関数の円

    w=z×z+z(z=x+iy) により、z平面における円 |z+1/2|=1はw平面ではどのような図形(方程式で)になるかという問題なのですが教えてください

    • yagitti
    • 回答数1
  • 難しい微分の計算

    計算の問題なのですが 答えはわかっているのですがどうしても その答えにならなくて困ってます。 問題は log([(a-x)^2+y^2]^1/2 +a-x/[(a+x)^2+y^2]^1/2 -a-x) です。 答えは伏せたほうがいいかもしれないので 出さないのですが どうしてもできません。 よろしくお願いします。

  • ベクトルの内積

    失礼します。どうしてもベクトルの問題でわからないところがあるので質問します。 △OABにおいて,OAベクトル=aベクトル,OBベクトル=bベクトルとする。 |aベクトル+bベクトル|=2√3, |aベクトル-bベクトル|=2, (aベクトル+bベクトル)×(aベクトル-bベクトル)=2であるとき。 |aベクトル|=? |bベクトル|=? ∠AOB=シーターとすると、cosシーター=? △OABの面積は=? 途中式の解説をお願いいたします。

  • √の問題

    こんばんわ。 ルート500=2.23607、ルート50=7.07107とした時ルート2分の9の近似値を求めよという問題なのですが、有利化をしてもルートの中が5になりません。どうすればいいのでしょうか?教えてください!

  • 複素平面について

    f(z)=1/zとしてw=f(z)とおいたとき z=iを通り実軸に平行な直線をlとする。fによるlの像f(l)をw平面上に図示せよ という問題についてwは|w-i/2|=1/2となるのでしょうか?|w+i/2|=1/2になるような気がするのですが教えてください!

  • 階差数列型漸化式

    階差数列型の a(n+1)-a(n)=b(n)のとき n≧2でa(n)=a(1)+Σ(n-1,k=1)b(k) の式を証明する途中式です。 言葉が足りなくてすいません。 a(n+1)-a(n)=b(n)のとき n=1のときa(2)-a(1)=b(1) n=2のときa(3)-a(2)=b(2) n=3のときa(4)-a(3)=b(3) …………………………………… n=1-1のときa(n)-a(n-1)=b(n-1) n=2 n=3 と増えてきているのに 最後の項はn=n-1となってしまうのですか?n=n+1のような気がするのですが。

    • boku115
    • 回答数3
  • 線形写像

    aをある平面ベクトルとし、任意の平面ベクトルxに対してaとxの内積(a,x)を与える写像をfとする。このときfはR^2からRへの線形写像であることをしめしたいのですがどう証明したらいいのかわからないです。

  • 違うやり方で・・・

    ∠BAC=45°の△ABCがある。AからBCに垂線を下ろし、その足をHとする。BH=2、HC=3のとき、AHの長さを求めよ。 この問題を方眼用紙を使わずに解く方法を教えてください。

  • 教えてください。

    Y=Tの2剰+T+4分の3が(T+2分の1)の2乗+2分の1にする方法を簡単に教えてください。

    • noname#8168
    • 回答数3