mixchannのプロフィール
- ベストアンサー数
- 5
- ベストアンサー率
- 50%
- お礼率
- 0%
できるだけ、わかりやすい回答ができるようがんばります。 再質問もどうぞ。余りしつこいのは、歓迎しません。
- 登録日2004/11/12
- 空間ベクトルについてです。
x-3y+z=4 2x-y+z=2 x+2y=-2 これら面の交点を見つけなければいけません。 答えは、x/2=(y+1)/(-1)=(z-1)/(-5)です。 行列ではなくて、消去法を使わなければいけないのですが、その解き方が分かりません。 分かる方いらっしゃいましたら教えて頂けますでしょうか?
- 締切済み
- 数学・算数
- yasueozeki
- 回答数4
- 方程式の整数解
”rを自然数とする。 連立方程式 x^2+y^2+z^2=1/3(r^2+2)…(1) x+y+z=r…(2) の整数解を決定せよ。” という問題です。 僕は (2)を(1)に代入して 3(x^2+y^2+z^2)=(x+y+z)^2+2=x^2+y^2+z^2+2xy+2yz+2zx+2 として、さらに同値変形で (x-y)^2+(y-z)^2+(z-x)^2=1 としました。 x-y、y-z、z-x は全て整数で、 (x-y)+(y-z)+(z-x)=0 であることから x-y=1,y-z=0,z-x=-1 となります。(x,y,zの対称性からこの場合だけ考えれば十分) これからx,y,zは一般にtを実数として x=t+1 y=z=t となります。 これと x+y+z=r から t=1/3(r-1) となったので、r≡1(mod.3)のときのみ題意を満たす(x,y,z)は存在して {x,y,z}={1/3(r+2),1/3(r-1),1/3(r-1)} である。 としました。 自分でいうのも何ですが、解法があまりにも巧すぎて、他の問題で使えそうにありません。 もっと自然な発想で解くことはできないでしょうか? よろしくお願いします。
- 方程式の整数解
”rを自然数とする。 連立方程式 x^2+y^2+z^2=1/3(r^2+2)…(1) x+y+z=r…(2) の整数解を決定せよ。” という問題です。 僕は (2)を(1)に代入して 3(x^2+y^2+z^2)=(x+y+z)^2+2=x^2+y^2+z^2+2xy+2yz+2zx+2 として、さらに同値変形で (x-y)^2+(y-z)^2+(z-x)^2=1 としました。 x-y、y-z、z-x は全て整数で、 (x-y)+(y-z)+(z-x)=0 であることから x-y=1,y-z=0,z-x=-1 となります。(x,y,zの対称性からこの場合だけ考えれば十分) これからx,y,zは一般にtを実数として x=t+1 y=z=t となります。 これと x+y+z=r から t=1/3(r-1) となったので、r≡1(mod.3)のときのみ題意を満たす(x,y,z)は存在して {x,y,z}={1/3(r+2),1/3(r-1),1/3(r-1)} である。 としました。 自分でいうのも何ですが、解法があまりにも巧すぎて、他の問題で使えそうにありません。 もっと自然な発想で解くことはできないでしょうか? よろしくお願いします。