mixchannのプロフィール

@mixchann mixchann
ありがとう数9
質問数0
回答数13
ベストアンサー数
5
ベストアンサー率
50%
お礼率
0%

できるだけ、わかりやすい回答ができるようがんばります。 再質問もどうぞ。余りしつこいのは、歓迎しません。

  • 登録日2004/11/12
  • 条件付き極値の問題

    一応検索はしたんですが、似たようなものでももっと難しい問題しかなかったので質問させていただきました。重複あったら申し訳ありません。 条件付極値の問題なのですが、 x^2+y^2=1のとき、関数z=x*yの最大値と最小値、およびそれらを取る点を求めよ というものです。もう少し簡単なのはできたんですが、これは結果に文字が残ったりしてうまくいかないんです。よろしくお願いします。

    • sazxdew
    • 回答数5
  • 空間ベクトルについてです。

    x-3y+z=4 2x-y+z=2 x+2y=-2 これら面の交点を見つけなければいけません。 答えは、x/2=(y+1)/(-1)=(z-1)/(-5)です。 行列ではなくて、消去法を使わなければいけないのですが、その解き方が分かりません。 分かる方いらっしゃいましたら教えて頂けますでしょうか?

  • 方程式の整数解

    ”rを自然数とする。 連立方程式 x^2+y^2+z^2=1/3(r^2+2)…(1) x+y+z=r…(2) の整数解を決定せよ。” という問題です。 僕は (2)を(1)に代入して 3(x^2+y^2+z^2)=(x+y+z)^2+2=x^2+y^2+z^2+2xy+2yz+2zx+2 として、さらに同値変形で (x-y)^2+(y-z)^2+(z-x)^2=1 としました。 x-y、y-z、z-x は全て整数で、 (x-y)+(y-z)+(z-x)=0 であることから x-y=1,y-z=0,z-x=-1 となります。(x,y,zの対称性からこの場合だけ考えれば十分) これからx,y,zは一般にtを実数として x=t+1 y=z=t となります。 これと x+y+z=r から t=1/3(r-1) となったので、r≡1(mod.3)のときのみ題意を満たす(x,y,z)は存在して {x,y,z}={1/3(r+2),1/3(r-1),1/3(r-1)} である。 としました。 自分でいうのも何ですが、解法があまりにも巧すぎて、他の問題で使えそうにありません。 もっと自然な発想で解くことはできないでしょうか? よろしくお願いします。

    • nabla
    • 回答数6
  • 方程式の整数解

    ”rを自然数とする。 連立方程式 x^2+y^2+z^2=1/3(r^2+2)…(1) x+y+z=r…(2) の整数解を決定せよ。” という問題です。 僕は (2)を(1)に代入して 3(x^2+y^2+z^2)=(x+y+z)^2+2=x^2+y^2+z^2+2xy+2yz+2zx+2 として、さらに同値変形で (x-y)^2+(y-z)^2+(z-x)^2=1 としました。 x-y、y-z、z-x は全て整数で、 (x-y)+(y-z)+(z-x)=0 であることから x-y=1,y-z=0,z-x=-1 となります。(x,y,zの対称性からこの場合だけ考えれば十分) これからx,y,zは一般にtを実数として x=t+1 y=z=t となります。 これと x+y+z=r から t=1/3(r-1) となったので、r≡1(mod.3)のときのみ題意を満たす(x,y,z)は存在して {x,y,z}={1/3(r+2),1/3(r-1),1/3(r-1)} である。 としました。 自分でいうのも何ですが、解法があまりにも巧すぎて、他の問題で使えそうにありません。 もっと自然な発想で解くことはできないでしょうか? よろしくお願いします。

    • nabla
    • 回答数6
  • 複素関数の円

    w=z×z+z(z=x+iy) により、z平面における円 |z+1/2|=1はw平面ではどのような図形(方程式で)になるかという問題なのですが教えてください

    • yagitti
    • 回答数1