30pctoff の回答履歴
全1件中1~1件表示
- 部分集合になる、ならない
1)a,b∈Wならばa+b∈W 2)a∈Wならばka∈W をみたすとき、部分空間になるということですがよく意味が理解できません。 例えば W=(x、y、z)∈R^3;x-y=0の場合、解答では X1=(x1、y1、z1)、X2=(x2、y2、z2)∈WとおくとX1+X2において (x1+x2)ー(y1+y2)=(x1-y1)+(x2-y2)=0 が成立するので1)が成り立つとあるのですが、 Wの右辺とX1+X2の右辺が等しければ1)が成り立つということでいいのでしょうか? また同様に、W=(x、y、z)∈R^3;x+y+z=1の場合、解答では x∈Wならば (2x)+(2y)+(2y)=2(x+y+z)=2 なので2xはWに含まれない。とあるのですがk(x+y+z)の形の右辺;2≠1;Wの右辺のため 2)が成り立たないということでしょうか? どなたか力添えお願いします。