mame594 の回答履歴

全24件中21~24件表示
  • 無限区間積分とln(i)について

    (1/sqr(2π)σ)exp(-x^2/2σ^2) を-∞から+∞まで積分せよという問題が解けません。 ここで、σは単なる定数なので、(1/sqr(2π)σ)は無視して計算をしようと思いました。 無限区間ですが、この場合、偶関数なので0から+∞まで積分して、2倍すればいいと考えています。つまり積分区間を0からtとして、出てきた結果を2倍し、tを+∞に近づけるという方法で解けばいいと思うのです。 しかし、肝心のexp(-x^2/2σ^2)の積分方法がわからず困っています。どうすればいいのか、教えてください。 また、z=ln(i)をre^(iθ)の形で表せという問題も出ています。 re^(iθ)=cos(θ)+isin(θ)であることは了解しているので、z=2-2iをre^(iθ)の形で表す問題は解けましたが、ln(i)についてはさっぱりわかりません。Taylar展開して、似たような形になればと思ったものの、うまくいきませんでした。log(1+x)=x-x^2/2+x^3/3-x^4/4+・・・と展開できるので、これにx=-1+iを代入してみたわけです。(-1+i)^(4n)=(-1)^(2n-1)・4^nというように、比較的きれいになることが確認できましたが、これがre^(iθ)にむすびつきません。これについても、アドバイスやご回答をお願いします。

    • MP4-18
    • 回答数4
  • 無限区間積分とln(i)について

    (1/sqr(2π)σ)exp(-x^2/2σ^2) を-∞から+∞まで積分せよという問題が解けません。 ここで、σは単なる定数なので、(1/sqr(2π)σ)は無視して計算をしようと思いました。 無限区間ですが、この場合、偶関数なので0から+∞まで積分して、2倍すればいいと考えています。つまり積分区間を0からtとして、出てきた結果を2倍し、tを+∞に近づけるという方法で解けばいいと思うのです。 しかし、肝心のexp(-x^2/2σ^2)の積分方法がわからず困っています。どうすればいいのか、教えてください。 また、z=ln(i)をre^(iθ)の形で表せという問題も出ています。 re^(iθ)=cos(θ)+isin(θ)であることは了解しているので、z=2-2iをre^(iθ)の形で表す問題は解けましたが、ln(i)についてはさっぱりわかりません。Taylar展開して、似たような形になればと思ったものの、うまくいきませんでした。log(1+x)=x-x^2/2+x^3/3-x^4/4+・・・と展開できるので、これにx=-1+iを代入してみたわけです。(-1+i)^(4n)=(-1)^(2n-1)・4^nというように、比較的きれいになることが確認できましたが、これがre^(iθ)にむすびつきません。これについても、アドバイスやご回答をお願いします。

    • MP4-18
    • 回答数4
  • 全微と偏微のちがいって

    x,yが変数 f=ax+by g1=cx+ef のとき、 ∂g1/∂x=a となるのはなぜですか? ∂f/∂xは0じゃないですよね。 理数が得意でない僕にはイミフメです。 全微と偏微の違いが一覧表のHPでもあったら教えてください。 お願いします。

    • noname#7077
    • 回答数4
  • 螺旋の周長の求め方

    半径rの円筒に巻きつけた糸をもどしながらできる螺旋上のある点から別の点までの周長の算出方法を知りたいのですが、どなたかご教示ください。なお、当方、高校程度の数学しか知識がありません。できるだけ、やさしくおねがいしたいのですが。

    • kokokei
    • 回答数6