gobo-tetsu の回答履歴
- 命題の真偽
命題P⇒Qが真となるのは (1) Pが真でQも真 (2) Pが偽であって、Qは真か偽かはどちらでもよい の2パターンがありますよね? 命題P⇒Qが真であることを示せ。といった問題は、 上の(1)・(2)の2つとも成り立つことを示さなくてはならないのですよね? 例えば、高校の数学の教科書にあるような a>b,c>d ⇒ a+c>b+d を証明せよ という問題は、「a>b,c>d ⇒ a+c>b+d」が真であることを証明せよと言っていると思うのですが, 解答では,a>b,c>dが真であることを仮定してa+c>b+dを導いています。 a>b,c>dが偽である場合は考えていませんが、 これは、a>b,c>dが偽の場合、a+c>b+dが真であろうが偽であろうが、いずれにせよ「a>b,c>d ⇒ a+c>b+d」は真となるので、 解答に書く必要がなく、a>b,c>dが真の場合だけを解答に書けばよいからということなのでしょうか? 例えば、 -k<x<k ⇒ x≧-1 が真となるようなkの値の範囲を求めよ。 といった問題があった場合、 (i) k≦0のとき -k<x<kを満たすxは存在せず(つまり偽であり)、 -k<x<k ⇒ x≧-1 は真 (ii)k>0のとき -k<x<kを満たすすべてのxが、x≧-1を満たせばよく、 -k≧-1 ∴0<k≦1 以上より、 k≦1 といった具合になると思います。 こういった場合は、Pの部分が偽であることも考慮しますから、 やはり先の証明問題ではPの部分(a>b,c>dが偽の場合)が偽であるときは省略されていると考えるのが妥当なのですかね?
- 命題の真偽
命題P⇒Qが真となるのは (1) Pが真でQも真 (2) Pが偽であって、Qは真か偽かはどちらでもよい の2パターンがありますよね? 命題P⇒Qが真であることを示せ。といった問題は、 上の(1)・(2)の2つとも成り立つことを示さなくてはならないのですよね? 例えば、高校の数学の教科書にあるような a>b,c>d ⇒ a+c>b+d を証明せよ という問題は、「a>b,c>d ⇒ a+c>b+d」が真であることを証明せよと言っていると思うのですが, 解答では,a>b,c>dが真であることを仮定してa+c>b+dを導いています。 a>b,c>dが偽である場合は考えていませんが、 これは、a>b,c>dが偽の場合、a+c>b+dが真であろうが偽であろうが、いずれにせよ「a>b,c>d ⇒ a+c>b+d」は真となるので、 解答に書く必要がなく、a>b,c>dが真の場合だけを解答に書けばよいからということなのでしょうか? 例えば、 -k<x<k ⇒ x≧-1 が真となるようなkの値の範囲を求めよ。 といった問題があった場合、 (i) k≦0のとき -k<x<kを満たすxは存在せず(つまり偽であり)、 -k<x<k ⇒ x≧-1 は真 (ii)k>0のとき -k<x<kを満たすすべてのxが、x≧-1を満たせばよく、 -k≧-1 ∴0<k≦1 以上より、 k≦1 といった具合になると思います。 こういった場合は、Pの部分が偽であることも考慮しますから、 やはり先の証明問題ではPの部分(a>b,c>dが偽の場合)が偽であるときは省略されていると考えるのが妥当なのですかね?
- アセンブラーのプログラムに関して
アセンブラー/370の古いプログラムを明日までに解析しなければならなくなってしまいました。 プログラムは下記のようなものなのですが処理内容がわからず困っております。 つきましては… (1)もしお分かりになられる方がいらっしゃいましたら どのような処理を行っているか教えていただけないでしょうか? よろしくお願いします。 AH 2,=H'18' STH 2,*+8 DC X'F070' DC S(エリア名称) DC H'0' BNH RTN
- 締切済み
- その他(プログラミング・開発)
- soulbird12
- 回答数5
- 不完全性定理 ユークリッド幾何学 公理
専門家の方にお聞きしたいのですが、不完全性定理でいう「自然数論を含む帰納的に記述できる公理系が、ω無矛盾であれば、証明も反証もできない命題が存在する。」において、 ユークリッド幾何学における証明も反証もできない命題=ユークリッド幾何学の5つの公理 ということでよろしいでしょうか?? また、ユークリッド幾何学の5つの公理以外には、ユークリッド幾何学において証明も反証もできない命題は存在しないと考えていましたが、正しいでしょうか?
- 自然科学は不完全性定理をもコントロールするか
GPSに特殊相対論と一般相対論による補正がされているというのは有名ですが、とくに一般相対論はリーマン幾何学をもちいています。 リーマン幾何学は非ユークリッド幾何学を扱うことができ、この際、平行線の公理を選択的にコントロールすることで、空間の歪みを叙述することが可能ということがいえるのではないかと思います。 平行線の公理といえば、ゲーデルの不完全性定理が関与するところですが、このようにアインシュタインのような天才は不完全性定理さえも物理学の道具として使いこなした、という印象を私は持っています。この印象は正しいでしょうか。 #ここでの近くのご質問に刺激を受けました。ちょっと筋が違うので新しく質問を立てました。
- 自然科学は不完全性定理をもコントロールするか
GPSに特殊相対論と一般相対論による補正がされているというのは有名ですが、とくに一般相対論はリーマン幾何学をもちいています。 リーマン幾何学は非ユークリッド幾何学を扱うことができ、この際、平行線の公理を選択的にコントロールすることで、空間の歪みを叙述することが可能ということがいえるのではないかと思います。 平行線の公理といえば、ゲーデルの不完全性定理が関与するところですが、このようにアインシュタインのような天才は不完全性定理さえも物理学の道具として使いこなした、という印象を私は持っています。この印象は正しいでしょうか。 #ここでの近くのご質問に刺激を受けました。ちょっと筋が違うので新しく質問を立てました。
- 自然科学は不完全性定理をもコントロールするか
GPSに特殊相対論と一般相対論による補正がされているというのは有名ですが、とくに一般相対論はリーマン幾何学をもちいています。 リーマン幾何学は非ユークリッド幾何学を扱うことができ、この際、平行線の公理を選択的にコントロールすることで、空間の歪みを叙述することが可能ということがいえるのではないかと思います。 平行線の公理といえば、ゲーデルの不完全性定理が関与するところですが、このようにアインシュタインのような天才は不完全性定理さえも物理学の道具として使いこなした、という印象を私は持っています。この印象は正しいでしょうか。 #ここでの近くのご質問に刺激を受けました。ちょっと筋が違うので新しく質問を立てました。
- 自然科学は不完全性定理をもコントロールするか
GPSに特殊相対論と一般相対論による補正がされているというのは有名ですが、とくに一般相対論はリーマン幾何学をもちいています。 リーマン幾何学は非ユークリッド幾何学を扱うことができ、この際、平行線の公理を選択的にコントロールすることで、空間の歪みを叙述することが可能ということがいえるのではないかと思います。 平行線の公理といえば、ゲーデルの不完全性定理が関与するところですが、このようにアインシュタインのような天才は不完全性定理さえも物理学の道具として使いこなした、という印象を私は持っています。この印象は正しいでしょうか。 #ここでの近くのご質問に刺激を受けました。ちょっと筋が違うので新しく質問を立てました。
- 自然科学は不完全性定理をもコントロールするか
GPSに特殊相対論と一般相対論による補正がされているというのは有名ですが、とくに一般相対論はリーマン幾何学をもちいています。 リーマン幾何学は非ユークリッド幾何学を扱うことができ、この際、平行線の公理を選択的にコントロールすることで、空間の歪みを叙述することが可能ということがいえるのではないかと思います。 平行線の公理といえば、ゲーデルの不完全性定理が関与するところですが、このようにアインシュタインのような天才は不完全性定理さえも物理学の道具として使いこなした、という印象を私は持っています。この印象は正しいでしょうか。 #ここでの近くのご質問に刺激を受けました。ちょっと筋が違うので新しく質問を立てました。
- 自然科学は不完全性定理をもコントロールするか
GPSに特殊相対論と一般相対論による補正がされているというのは有名ですが、とくに一般相対論はリーマン幾何学をもちいています。 リーマン幾何学は非ユークリッド幾何学を扱うことができ、この際、平行線の公理を選択的にコントロールすることで、空間の歪みを叙述することが可能ということがいえるのではないかと思います。 平行線の公理といえば、ゲーデルの不完全性定理が関与するところですが、このようにアインシュタインのような天才は不完全性定理さえも物理学の道具として使いこなした、という印象を私は持っています。この印象は正しいでしょうか。 #ここでの近くのご質問に刺激を受けました。ちょっと筋が違うので新しく質問を立てました。
- 自然科学は不完全性定理をもコントロールするか
GPSに特殊相対論と一般相対論による補正がされているというのは有名ですが、とくに一般相対論はリーマン幾何学をもちいています。 リーマン幾何学は非ユークリッド幾何学を扱うことができ、この際、平行線の公理を選択的にコントロールすることで、空間の歪みを叙述することが可能ということがいえるのではないかと思います。 平行線の公理といえば、ゲーデルの不完全性定理が関与するところですが、このようにアインシュタインのような天才は不完全性定理さえも物理学の道具として使いこなした、という印象を私は持っています。この印象は正しいでしょうか。 #ここでの近くのご質問に刺激を受けました。ちょっと筋が違うので新しく質問を立てました。
- 自然科学は不完全性定理をもコントロールするか
GPSに特殊相対論と一般相対論による補正がされているというのは有名ですが、とくに一般相対論はリーマン幾何学をもちいています。 リーマン幾何学は非ユークリッド幾何学を扱うことができ、この際、平行線の公理を選択的にコントロールすることで、空間の歪みを叙述することが可能ということがいえるのではないかと思います。 平行線の公理といえば、ゲーデルの不完全性定理が関与するところですが、このようにアインシュタインのような天才は不完全性定理さえも物理学の道具として使いこなした、という印象を私は持っています。この印象は正しいでしょうか。 #ここでの近くのご質問に刺激を受けました。ちょっと筋が違うので新しく質問を立てました。
- 独我論と日常感覚
はじめまして。 似たような話題は「主観客観」等の トピックスにて今までも議論しつくされて いるのかもしれませんが、 この世界で現象することは全て 自分の意識の中に立ち現れた限りのものであり、 自分の外に実在する存在者などない、とする 独我論は、 私がいままで経験してきた、自分と世界のあり方の 一つの説明としてある説得力をもつのですが、 日常的な感覚では、 自分と同じような「独我」が自分の外に存在していることを 前提してこのような質問などしており、 思考の上での世界観と日常的な世界観が乖離しています。 このような乖離に対して、どのような調停、 が可能でしょうか。 よろしければ、ご教示ください。