uma_potetoのプロフィール
@uma_poteto uma_poteto
ありがとう数0
質問数0
回答数2
- ベストアンサー数
- 0
- ベストアンサー率
- 0%
- お礼率
- 0%
- 登録日2007/11/20
- 高校数学 積分
全く歯が立たない問題に直面したので質問させていただきます。 nを自然数とする。座標平面上に曲線 C:Y=tanX (0≦X<π/2)、直線 Ln:Y=(π/2-X)/n がある。 CとLnとY軸によって囲まれる部分の面積をSnとするとき、lim(n^2*Sn)を求めよ。 この問題が分からないので質問させていただきたいのですが、面積を求めようと思ったときに与えられたふたつの式の交点が求められません。どのようにしたら交点が出るでしょうか? それとも交点を求めない何か他の方法があるのでしょうか? ヒント・入り口等でも全くかまいませんので宜しくお願いします。
- ベストアンサー
- 数学・算数
- plutonium212
- 回答数10
- 高校数学 積分
全く歯が立たない問題に直面したので質問させていただきます。 nを自然数とする。座標平面上に曲線 C:Y=tanX (0≦X<π/2)、直線 Ln:Y=(π/2-X)/n がある。 CとLnとY軸によって囲まれる部分の面積をSnとするとき、lim(n^2*Sn)を求めよ。 この問題が分からないので質問させていただきたいのですが、面積を求めようと思ったときに与えられたふたつの式の交点が求められません。どのようにしたら交点が出るでしょうか? それとも交点を求めない何か他の方法があるのでしょうか? ヒント・入り口等でも全くかまいませんので宜しくお願いします。
- ベストアンサー
- 数学・算数
- plutonium212
- 回答数10