jokyojuのプロフィール
- ベストアンサー数
- 10
- ベストアンサー率
- 45%
- お礼率
- 76%
- 登録日2007/06/24
- 数学的帰納法
先日模試があったのですが、自分の解答のどこが誤りなのか分かりません…。 nを正の整数とする。xとyの方程式 3x+4y=n…ア について、次の問に答えよ。 問 kを正の整数とする。n=3k+1のとき、方程式アを満たす0以上の整数x,yが存在することを示せ。 自分の解答↓ 1)n=4のとき ア⇔3x+4y=4 (x,y)=(0,1)はこれを満たすので、このときアを満たす0以上の整数x,yは存在する。 2)n=3k-2(k=2,3,4…)のとき、 アを満たす0以上の整数x,yは存在すると仮定する。 このとき、x=α、y=β(α、βは0以上の整数)とすると、 3α+4β=3k-2…イ が成立する。 このとき、n=3k+1のときでもアを満たす0以上の整数x,yは存在することを示す。 3x+4y=3k+1…ウとする。 ウ-イ 3(x-α)+4(y-β)=3であり、(x-α、y-β)=(1,0)はこれをみたすから、(x,y)=(1+α、β)はウをみたす。 よって、n=3k+1のときでも、アを満たす0以上の整数x,yは存在する。 以上のことから3でわると1余る4以上のすべての自然数nについて、アをみたす0以上の整数x,yは存在することが示された。 よって題意は示された。 と解答したのですが…。 実際解答したときは、かなり急いでいたので、2)→1)のように、 「n=3k-2で成り立つことを仮定」→「n=3k+1で成り立つ」→「n=4のとき成り立つ」というふうに順序が少し変になってしまいました。 採点欄のところには「仮定を用いてるので証明とはいえない」と書かれてしまったのですが、数学的帰納法を用いるなら、仮定を用いるのはふつうではないのでしょうか? 数学的帰納法だと伝わらなかったのでしょうか?? そもそも根本的におかしいのでしょうか?? どなたかお願いします。
- 比率の計算です。経理に詳しい方お願いします。
会社の損益に対する計算です。 質問 A社は、昨年:マイナス9835000円の損益になりました。今年:3502000円の損益となった場合、前年比何%になるのでしょうか? 考え方と算式を教えていただければ嬉しいです。
- 締切済み
- 数学・算数
- hamadesu33
- 回答数2