kts2371148のプロフィール

@kts2371148 kts2371148
ありがとう数87
質問数5
回答数128
ベストアンサー数
49
ベストアンサー率
70%
お礼率
82%

  • 登録日2007/05/28
  • 確率で勘での正解を含まない正解率の出し方は?

    例えば、三択問題が5問あります。答える人は確実にわかっている答えを選ぶときもあれば、勘で答えて間違えるときもあれば、勘で答えて正解することもあります。  5問中4問正解しても、勘で正解しているのかそれとも本当にわかっていて正解しているのかわかりません。4問正解では正解率80%ですが、そのうち運の要素を含まない正解率を出すにはどうすればいいと思いますか?文献やURLを教えていただけたら幸いです。

    • noname#48924
    • 回答数10
  • 確率で勘での正解を含まない正解率の出し方は?

    例えば、三択問題が5問あります。答える人は確実にわかっている答えを選ぶときもあれば、勘で答えて間違えるときもあれば、勘で答えて正解することもあります。  5問中4問正解しても、勘で正解しているのかそれとも本当にわかっていて正解しているのかわかりません。4問正解では正解率80%ですが、そのうち運の要素を含まない正解率を出すにはどうすればいいと思いますか?文献やURLを教えていただけたら幸いです。

    • noname#48924
    • 回答数10
  • 最適化問題の解法

    最適化問題の解法に関するご質問です。 (マニアックな質問ですがお付き合いください・・) 定義: X_j(1<=j<=N)(行列サイズ=d×1)、 A_i(1<=i<=N)(対角行列、行列サイズ=d×d)、 B(行列サイズ=d×1)、 i = (1, ... , 1)' 目的関数:min_{X_k} { |B-Σ_[i=1,N]A_i*X_i|^2 +βΣ_[k=1,N]|B*X_k|^2 } 最終的には、X = (X_1, ... ,X_N)を求めたいです。 必要であれば、「制約条件:W_i'*i=1」を使っても構いません。 この制約条件をもとに下記のように式を変形しました。 目的関数:min_{X_k} { Σ_[i=1,N]Σ_[j=1,N]{X_i'*A_i'*A_j*X_j}+βΣ_[k=1,N]{X_k'*B'*B*X_k} } 制約条件:X_i'*i=1 この最適化問題を解くのに頭を抱えています。 解法を導くことができる方、ヒントを持っている方がいらっしゃいましたら、ぜひともご教授お願い致します。 よろしくお願い致します。

  • 小学生の比例の問題についての解き方

    小学6年生の中学受験の際に、以下の解き方が正しいか否かアドバイスお願いします。 【問題】3mで270円の針金があります。5m買ったらいくらですか? 【解答1】     3:270=5:□         □=450(円) 【解答2】     3:5=270:□       □=450(円) なぜ質問しているのかと言いますと、比の式を使う場合は、 同じ単位にしか使ってはいけないということで、上記の解き方が 両方共不正解になると聞きました。 子供はこの解きかたが一番間違いが少ないので、この方法を 使いたいのですが、定義を超えた使用方法であれば仕方がありません。 アドバイスお願いします。

  • にゃんこ先生の自作問題、Buffonの針を正方形タイルに変えたら確率は?

    にゃんこ先生といいます。次のようにゃビュホンの針と呼ばれる問題が知られています。 (1)大きにゃ紙に間隔がdの平行線をたくさん引き、長さkの針をばらばらに落としたとき、 針が平行線と交わる確率pはp=2k/πd とにゃる。 (2)では、大きにゃ紙に間隔がdの平行線をたくさん引き、一辺の長さkの正方形タイルをばらばらに落としたとき、 正方形タイルが平行線と交わる確率はどうにゃるのでしょうか? (3)また、大きにゃ紙に間隔がdの平行線を縦横に格子状にたくさん引き、長さkの針をばらばらに落としたとき、 針が格子線と交わる確率はどうにゃるのでしょうか? (4)さらに、大きにゃ紙に間隔がdの平行線を縦横に格子状にたくさん引き、一辺の長さkの正方形タイルをばらばらに落としたとき、 正方形タイルが格子線と交わる確率はどうにゃるのでしょうか? 必要であれば、針や正方形タイルは十分に小さいものと考えてください。