torukoriceのプロフィール

@torukorice torukorice
ありがとう数12
質問数20
回答数1
ベストアンサー数
0
ベストアンサー率
0%
お礼率
18%

  • 登録日2006/03/11
  • 不偏分散、ガンマ分布、そして不偏推定量

    X1..Xnは独立で標準分布、期待値μ、分散σ^2。不偏分散s^2=1/(n-1) Σ(Xi - X')^2, X'=1/n ΣXi, で iは1からnまでです。X'はガンマ分布Γ(α、λ)に従い、α=(n-1)/2, λ=(n-1)/(2*σ~2)です。 (a) ガンマ分布を利用して、s^2がσ^2の不偏推定量であることと、その分散を求めよ。 (b) T(k)=k*s^2、kは定数 を考えます。その際に、T(k)の偏り と 分散をσ^2の推定量で表せ。そして、T(k)の 誤差の平方は(MSE)を最小値にするkを求めよ。 と言う問題があります。 最初にs^2=1/(n-1) Σ(Xi^2 - n X'^2)と表し、E(X')=σ^2と言う準備はできたのですが、それ以降さっぱりここ3,4日間考えてますがわかりません。回答は自分で導きたいと思ってますので、アドバイスをいただけないでしょうか?