chabbuu の回答履歴
全1件中1~1件表示
- 対数の問題
x≧2、y≧1/2、xy=8のとき、log2 x・log2 y の最大値、最小値を求めよ。 という問題です。 解答は x≧2、y≧1/2、xy=8から log2 x + log2 y =3 このとき、log2 x・log2 y=log2 x(3-log2 x)=-(log2 x - 3/2)^2+9/4 log2 x=3/2 , x=y=2√2 のとき、最大値9/4 log2 x=4 , x=16 , y=1/2のとき最小値-4 と書いてありました。 疑問が2つあります。 まず1つ目 x≧2、y≧1/2、xy=8から log2 x + log2 y =3 この式の変形はどうしたらこうなるのですか? xy=8の式を両辺底2で対数を取ったのですか? log2 xy=log2 8 これはできるのですか? 私が思うに log2 2^xy =log2 2^8 となると思うのですが・・・(間違えならすいません。) 2つ目 平方完成し頂点が(3/2 , 9/4)となっている。 どのようなグラフをかくのですか? xじくはlog2 x軸となるのですか? どうやったら最小値が出てくるのですか? すいませんが、教えてください。