atsu2002のプロフィール
- ベストアンサー数
- 4
- ベストアンサー率
- 23%
- お礼率
- 100%
日曜はサッカー、平日休みになると釣りしてます!
- 登録日2005/03/03
- サッカーのスパイク・・・。(総体近いのでよろしくおねがいします)
私は、高校生で主にトップ下・ひきめのFWをやっていますがなかなかしっくりくるスパイクがありません。今はナイキのトータル90をはいているんですが、先が細くていまいちです。どなたがお勧めのスパイクありませんか?希望は 1・一万円以下で 2・なるべく軽いほうがいいです 3・PUMAはくるぶしの位置があいません。 4・自分の中では、ミズノかアディダスがいいかと思ってます。 よろしくお願いします。
- ベストアンサー
- サッカー・フットサル
- 19871110
- 回答数3
- 順列
二つ質問があります、よろしくお願いします。 NAGOYAJOの8文字をすべて並べてできる順列の中で、OAまたはAOという並びを少なくとも1つ含む順列はいくつあるか? 余事象を考え、・・・・・・ NGYJの両端と間に、AA、O、OとOO、A、A を入れるとおりで間違えてしまいました・・・・・ なぜ、5C1×4C2になるのでしょうか??・・・(1) また、方針、論理の進め方はあってるのですが、どうしてもこのような問題だと、数え違え(重複してor数えたり無い)をしてしまいます・・・・・・ 場合の数の数え方で完璧に間違えなくするにはどうしたらよいでしょうか?(問題集など)・・・(2)
- ベストアンサー
- 数学・算数
- amazon_564219
- 回答数4
- 順列
二つ質問があります、よろしくお願いします。 NAGOYAJOの8文字をすべて並べてできる順列の中で、OAまたはAOという並びを少なくとも1つ含む順列はいくつあるか? 余事象を考え、・・・・・・ NGYJの両端と間に、AA、O、OとOO、A、A を入れるとおりで間違えてしまいました・・・・・ なぜ、5C1×4C2になるのでしょうか??・・・(1) また、方針、論理の進め方はあってるのですが、どうしてもこのような問題だと、数え違え(重複してor数えたり無い)をしてしまいます・・・・・・ 場合の数の数え方で完璧に間違えなくするにはどうしたらよいでしょうか?(問題集など)・・・(2)
- ベストアンサー
- 数学・算数
- amazon_564219
- 回答数4
- 三角関数
先程も質問させていただいたのですが、まだ三角関数で引っかかるところがあったので質問させてください。 全ての式においてθを求めます。 1)次の式を0°≦θ≦360°の範囲内で答えなさい。 sin^2θ-5sinθcosθ=0 sinやcosに統一すべきなのでしょうが、どのようにして統一したらいいかが判りません。 2)次の式を-π≦θ≦πの範囲内で答えなさい。 tan^3θ-4tan^2θ+tanθ+6=0 こちらは既にtanに統一されているのですが、3乗の処理の仕方や、正直何をすべきだかが判りません。 3)次の式を-180°≦θ≦180°の範囲内で答えなさい。 2cos^3θ=3sinθcosθ この計算は以下までやりました。 2cos^3θ/cosθ=3sinθcosθ/cosθ 2cos^2θ=3sinθ 2(1-sin^2θ)=3sinθ 2-2sin^2θ=3sinθ -2sin^2θ-3sinθ+2=0 2sin^2θ+3sinθ-2=0 (2sinθ?????)(sinθ?????) ここでは因数分解ですよね? 最後の質問です(多くて申しわけありません) 3)次の式を0≦θ≦2πの範囲内で答えなさい。 4tan^3θ-4tan^2θ+tanθ=0 この式も一応挑戦してみました 4tan^3θ-4tan^2θ+tanθ/tanθ=0/tanθ 4tan^2θ-4tan^2θ+tanθ=0 tanθ=0 θ=tan^-1(0) θ=0? このような解答になってしまいました。 初歩的なものもありますがお願いいたします。 一問でも良いので、説明していただけたら幸いです。