ATZ1229tktのプロフィール

@ATZ1229tkt ATZ1229tkt
ありがとう数6
質問数0
回答数12
ベストアンサー数
2
ベストアンサー率
33%
お礼率
0%

  • 登録日2021/07/12
  • 2022大学入学共通テスト数学ⅠA確率

    今回(2022)の大学入学共通テストでは、プレゼント交換会で自分のプレゼントを受け取らない確率を考察させる問題が出題されました。ほぼ同義になるように要約すると、n人が1人1個ずつ異なるプレゼントを用意し、これを一度集めてからでたらめに元のn人に1個ずつ配るとき、誰も自分の用意したプレゼントを受け取らない確率(以下p(n)とする)について、n=2、3、4、5のときを順に求める問題です。 予備校の解説等を見ると、この確率の分子に当たるものは完全順列などと呼ばれているらしく、さらにwiki等で調べると包除原理等を用いることで p(n)=∑_{k=0~n}((-1)^k・(1/k!)) を導くことができることがわかりました。このことは、 p(1)=0,p(n)=p(n-1)+(-1)^n・(1/n!)…(*) が成り立つこととほぼ同義ですが、この式に興味を持ちました。漸化式(*)には直観的な意味があるのでしょうか。p(n)は、nが奇数のときはp(n-1)から1/n!を引けばよく、nが偶数のときはp(n-1)に1/n!を足せばよいということですが、直接説明する方法があるでしょうか。 もし直観的に捉えることができるのであれば、この漸化式に受験生が気づき、超高速で解けた可能性もあるということになります。アイディアがあったら是非ご教示いただきたく存じます。よろしくお願いします。

    • Tofu-Yo
    • 回答数7
  • 整数問題

    整数問題の解き方を教えてください。 a,b,c を実数の定数としてf( x )= x^3 + ax^2 + bx + cとおくとき、(1)、(2)を示しなさいという問題です。 ⑴ f( - 1 )、f( 0 )、f( 1 ) がすべて整数ならば任意の整数 n に対して f( n ) は整数 ⑵ 連続する 3 つの整数に対して、 f( x ) がすべて整数ならば、任意の整数 n に対して f( n ) は整数

    • OBAKEI
    • 回答数2
  • 高校数学 不定方程式(百五減算)について

    数学Aの問題で教えて頂きたいことがあります。 フォーカスゴールド(Ⅰ・A)の例題262で 「3で割ると2余り、5で割ると3余り、7で割ると4余る3桁の正の整数のうち、最大のものを求めよ。」 解答(別解)として、「N=15a+35b+21c(a、b、cは整数)という数を考える。」とあり、合同式を用いて方法を使っているのですが、なぜそのような式を立てようと考えるのかがしっくりきません。 確かに3と5の最小公倍数15、5と7の最小公倍数35、3と7の最小公倍数21はわかりますが、N=15a+35b+21cと置くと理由がわかっておりません。 宜しくお願いします。

  • 組み分けの問題

    「3 人の男子 p,q,r および 5 人の女子 a,b,c,d,e の計 8 人がいるとき,8 人を 3 組に分ける方法は何通りありますか。ただし,どの組にも男女が最低 1 人ずつ入るものとします。」 下記のようになりましたが、合っていますか? 女子を1組に1人ずつ入れると、 5C3=10 残りの女子を入れると、 10×3^2=90 男子は3!/3!=1 したがって、90×1=90通り

    • OBAKEI
    • 回答数5
  • 確率漸化式の問題

    漸化式の立て方を教えてください。問題文は以下の通りです。 「袋の中に 1 から 5 までの整数が 1 つずつ書かれた球が 5 個入っている。この袋から球を 1 個取り出し、その球に書かれた数を調べて袋に戻す操作を繰り返す。この操作を n 回繰り返し、取り出された球 n 個に書かれた整数の和が 3 の倍数となる確率を Pn とする。このとき、P n+1 を Pn を用いて表しなさい。」

    • OBAKEI
    • 回答数2