ATZ1229tktのプロフィール
- ベストアンサー数
- 2
- ベストアンサー率
- 33%
- お礼率
- 0%
- 登録日2021/07/12
- 2022大学入学共通テスト数学ⅠA確率
今回(2022)の大学入学共通テストでは、プレゼント交換会で自分のプレゼントを受け取らない確率を考察させる問題が出題されました。ほぼ同義になるように要約すると、n人が1人1個ずつ異なるプレゼントを用意し、これを一度集めてからでたらめに元のn人に1個ずつ配るとき、誰も自分の用意したプレゼントを受け取らない確率(以下p(n)とする)について、n=2、3、4、5のときを順に求める問題です。 予備校の解説等を見ると、この確率の分子に当たるものは完全順列などと呼ばれているらしく、さらにwiki等で調べると包除原理等を用いることで p(n)=∑_{k=0~n}((-1)^k・(1/k!)) を導くことができることがわかりました。このことは、 p(1)=0,p(n)=p(n-1)+(-1)^n・(1/n!)…(*) が成り立つこととほぼ同義ですが、この式に興味を持ちました。漸化式(*)には直観的な意味があるのでしょうか。p(n)は、nが奇数のときはp(n-1)から1/n!を引けばよく、nが偶数のときはp(n-1)に1/n!を足せばよいということですが、直接説明する方法があるでしょうか。 もし直観的に捉えることができるのであれば、この漸化式に受験生が気づき、超高速で解けた可能性もあるということになります。アイディアがあったら是非ご教示いただきたく存じます。よろしくお願いします。
- 高校数学 不定方程式(百五減算)について
数学Aの問題で教えて頂きたいことがあります。 フォーカスゴールド(Ⅰ・A)の例題262で 「3で割ると2余り、5で割ると3余り、7で割ると4余る3桁の正の整数のうち、最大のものを求めよ。」 解答(別解)として、「N=15a+35b+21c(a、b、cは整数)という数を考える。」とあり、合同式を用いて方法を使っているのですが、なぜそのような式を立てようと考えるのかがしっくりきません。 確かに3と5の最小公倍数15、5と7の最小公倍数35、3と7の最小公倍数21はわかりますが、N=15a+35b+21cと置くと理由がわかっておりません。 宜しくお願いします。