localesrpのプロフィール
@localesrp localesrp
ありがとう数0
質問数0
回答数1
- ベストアンサー数
- 0
- ベストアンサー率
- 0%
- お礼率
- 0%
- 登録日2017/05/18
- 性別男性
- 都道府県青森県
- 微分、積分の一般化
微積分の一般化について、 dを差分演算子として df(x):=f(x+h)-f(x) と定めれば、普通の微分は df(x)/dx=(f(x+h)-f(x))/hで普通の定義と一致し、xを任意のg(x)とすることで、 df(x)/dg(x)=(f(x+h)-f(x))/(g(x+h)-g(x))として微分を一般化でき、積分についても ∫を差分演算子の逆、総和演算子として定めれば ∫f(x)dxの微分を考えたとき d∫f(x)dx/dx=f(x)dx/dx=f(x) として通常の微分と一致し ∫f(x)dg(x)=∫[f(x)dg(x)/dx]dx=∫[f(x)*g'(x)]dxとして一般化できますよね? さらにこの定義なら連鎖律などを簡単に計算できますよね? これは微積分の一般化になりますか? それとこの定義の仕方について触れているweb等があれば教えてください