bluesky1333のプロフィール
- ベストアンサー数
- 1
- ベストアンサー率
- 33%
- お礼率
- 33%
- 登録日2012/02/23
- 積分
x>0とし f(x)=∫{1~x}logt/(1+t) dt としたときの f(x)+f(1/x)を求めよという問題なのですが、 f(1/x) =∫{1~1/x}logt/(1+t) dt =∫{1~x}log(1/t)/(1+1/t) dt =-∫{1~x}tlogt/(1+t) dt =-∫{1~x}{logt-(logt)/(1+t)}dt =-∫{1~x}logt dt +∫{1~x}(logt)/(1+t)dt =-xlogx +x +1+f(x) よってf(x)+f(1/x)=2f(x)-xlogx +x +1 というところまで一応出たのですが、 1)ここまであってるでしょうか? 2)これはどこまで計算すればいいのでしょうか? 回答お願いします。
- 当たりくじの問題について
「当たりくじがa枚入っているn枚のくじから一枚引く。くじは一回引いたら元に戻す。n回くじを引いたとき、k回当たりくじである確率をPn(k)とし、n→∞のときのP(k)について、kの平均値E(k),及び分散V(k)を求める。」という問題が分かりません。どなたか教えてください。
- 二次不等式について
-1≦x≦1の範囲で-1≦x^2+2ax+4a≦1が成り立つaの値の範囲を求めよ という問題で、 問題より最大値≦1、最小値≧-1であることが分かるから、最大値は端点の-1か1であるので、それをx^2+2ax+4aに代入しそれが1以下であると同じ そこからa≦0ということが導き出せました しかし最小値の場合はとりあえず頂点の座標(-a,4a-a^2)を出して-a≦1と-a>1と場合分けしてるのですが、なぜ頂点を求めてそれらのような場合分けになるのですか? 軸さえ分かればyの頂点はいりませんし、-1≦x^2+2ax+4a≦1ということは-a<1と-1≦a≦1と-a<-1ではないのですか?
- ベストアンサー
- 数学・算数
- noname#150695
- 回答数5