ftg_のプロフィール
- ベストアンサー数
- 0
- ベストアンサー率
- 0%
- お礼率
- 0%
- 登録日2011/06/16
- p元体上の一般線形群について
p : 奇素数, F := Z/pZ : p元体, G := GL(2, F) : F上の2次一般線形群, H := SL(2, F) : F上の2次特殊線形群, Z := Z(G) : Gの中心, G_1 := HZ, A ∈ G に対して、 C_G(A) := { X ∈ G | AX = XA } : GにおけるAの中心化群, E : 2次の単位行列, U = {{1, 1}, {0, 1}} ∈ H とするとき、 (1) G_1がGの指数2の部分群であることを示せ。 (2) C_G(U) ⊂ G_1 であることを示せ。 (3) U^H, U^(G_1), U^GでそれぞれUを含むH, G_1, Gの共役類を表すことにすると、 |U^H| = |U^(G_1)| = |U^G|/2 という等式が成立することを示せ。 という問題の解法が分かりません。 C_G(U) = { {{a, b}, {0, a}} | a, b∈F, a≠0 }, Z = { aE | a∈F, a≠0 }, |G| = (p^2-1)(p^2-p), |H| = (p^2-1)p, |Z| = p-1 までは調べたり計算するなどして出してみたのですが、 これも合っているのかどうか自信がありません。 どなたか教えてください。よろしくお願いします。
- p元体上の一般線形群について
p : 奇素数, F := Z/pZ : p元体, G := GL(2, F) : F上の2次一般線形群, H := SL(2, F) : F上の2次特殊線形群, Z := Z(G) : Gの中心, G_1 := HZ, A ∈ G に対して、 C_G(A) := { X ∈ G | AX = XA } : GにおけるAの中心化群, E : 2次の単位行列, U = {{1, 1}, {0, 1}} ∈ H とするとき、 (1) G_1がGの指数2の部分群であることを示せ。 (2) C_G(U) ⊂ G_1 であることを示せ。 (3) U^H, U^(G_1), U^GでそれぞれUを含むH, G_1, Gの共役類を表すことにすると、 |U^H| = |U^(G_1)| = |U^G|/2 という等式が成立することを示せ。 という問題の解法が分かりません。 C_G(U) = { {{a, b}, {0, a}} | a, b∈F, a≠0 }, Z = { aE | a∈F, a≠0 }, |G| = (p^2-1)(p^2-p), |H| = (p^2-1)p, |Z| = p-1 までは調べたり計算するなどして出してみたのですが、 これも合っているのかどうか自信がありません。 どなたか教えてください。よろしくお願いします。
- p元体上の一般線形群について
p : 奇素数, F := Z/pZ : p元体, G := GL(2, F) : F上の2次一般線形群, H := SL(2, F) : F上の2次特殊線形群, Z := Z(G) : Gの中心, G_1 := HZ, A ∈ G に対して、 C_G(A) := { X ∈ G | AX = XA } : GにおけるAの中心化群, E : 2次の単位行列, U = {{1, 1}, {0, 1}} ∈ H とするとき、 (1) G_1がGの指数2の部分群であることを示せ。 (2) C_G(U) ⊂ G_1 であることを示せ。 (3) U^H, U^(G_1), U^GでそれぞれUを含むH, G_1, Gの共役類を表すことにすると、 |U^H| = |U^(G_1)| = |U^G|/2 という等式が成立することを示せ。 という問題の解法が分かりません。 C_G(U) = { {{a, b}, {0, a}} | a, b∈F, a≠0 }, Z = { aE | a∈F, a≠0 }, |G| = (p^2-1)(p^2-p), |H| = (p^2-1)p, |Z| = p-1 までは調べたり計算するなどして出してみたのですが、 これも合っているのかどうか自信がありません。 どなたか教えてください。よろしくお願いします。