agamkのプロフィール
- ベストアンサー数
- 1
- ベストアンサー率
- 100%
- お礼率
- 100%
- 登録日2011/01/22
- 図形と計量
よろしくお願いします 円に内接する四角形ABCDがある AB=4 BC=5 CD=7 DA=10のとき、sinAとこの四角形ABCDの面積を求めよの問題で 解答中 四角形ABCDは円に内接するからC=180°-A △ABDにおいて余弦定理より BD^2=116-80cosA…(1) △BCDにおいて余弦定理より BD^2=74+70cosA …(2) (1)(2)より116-80cosA=74+70cosA ゆえにcosA=7/25 となっていますが(1)(2)から求まるcosA=7/25は必ず答えにしてよいのでしょうか? ここでの論理の流れの理解がすっきりしません この問題では BD>0、-1<cosA<1のもとで (1)かつ(2)⇔cosA=7/25かつBD^2=468/5⇔cosA=7/25かつBD=√(468/5) とするのが正しいような気がするのですがどうしてBD存在には触れずに解答してしまっているのですか?煩雑さを回避するためですか? もしくわ (1)かつ(2)からもとまる必要条件によってcosA=7/25に絞る そして図形を描くと1つ存在することがわかる、だからこれを答えとしているのですか? つまり必要条件から1つにしぼることができ、かつ内接四角形を書いてみると確かに四角形は固定されていてこれをみたすcosAは1つ、だからそのcosAはcosA=7/25となるのですか? もしかするとこうゆうsinやcosや面積などを求めるときは 証明の問題と同様に一方通行の議論でこたえをしぼっていくのですか? だとしてもそのでてきた値が本当に題意を満たすのかの確認はどの段階で行えばよいのでしょう? ちょっと混乱しています、どなたかよろしくお願いします。
- ベストアンサー
- 数学・算数
- agkedddddd
- 回答数1