shibuyashiのプロフィール
- ベストアンサー数
- 0
- ベストアンサー率
- 0%
- お礼率
- 0%
- 登録日2009/08/28
- 尺度作成で因子分析の斜交回転を利用することは不合理では?
僕は、尺度作成で因子分析の斜交回転を利用することは不合理であり、尺度は直交のほうがいいと思うのですが、斜交回転が基本というのが最近の心理学の主流だということで、困っています。どうしたらいいでしょうか。 僕は、心理学者ではないのですが(理系で実学系の人間です)、最近ある分野での個人の特徴を示す尺度を作るために、心理学者の友人と一緒に仕事をしています。ネットで検索すると確かに最近の心理学では以下のような主張があるようです。 1. 直交するという前提に無理があって,たいていの要因は多かれ少なかれ相関している。直交回転では、心理学的な意味は、回転結果にはないと考えるべきである。 2.因子間相関の大きさを集団間で固定した解を計算するには、共分散構造分析を使用しなければならない。 しかしこれでは、共分散構造分析をできる人しか使えないような尺度になってしまうので、これらは本来モデル作成のための議論であって、そのモデルを離れて広く利用されるための尺度作成の議論ではないと思います。直行尺度なら、もっと簡単に扱えるので、尺度としての幅広い応用性があると思います。 たとえば、多重共線性を考えずに単純な重回帰分析にかけることもできます。それに関連した応用面を言えば、採否基準になどに合成得点を求める際も、因子に相関があると単純な加重和を求めることは無意味になります。 また、たとえば2次元の単純なマッピングを行ってセグメントを分けるということは人間がよくやることですが、これはそもそもその2次元が独立であることを暗黙の前提に行っていると思います。たとえば、地図を作る際に、方位が独立でない地図を作ったら混乱するでしょう。確かに、日本では北に行くほど東に行くので、東-西(表日本-裏日本)と東北-西南という2つの斜交する方位を使うと便利なような気がします。しかし、そんな地図はどこを探してもうっていません。利用者が誤解・混乱するからです。 多変量解析はアルゴリズムとしては単純なものですが、それでも最終的な利用者(結果レポートを読む実務家)には難しいもので、特に因子分析の解釈は最終利用者の誤解を招きやすいことは、実務の経験のある方ならよくご存知だと思います。利用者の誤解・混乱を助長するような斜交軸の利用は、避けるほうが賢明ではないでしょうか。 そもそも、直交するという前提に無理があるというなら、線形だという前提のほうがもっと無理があるでしょう。その場合は非線形な解析をするほうがいいのでしょうが、たとえば決定木分析を行うことを考えると、上位ノードで選ばれた因子と相関する因子は下位ノードで選ばれずに剪定されてしまう可能性が高く、複数の因子を準備する意味が希薄化します。 もちろん、因子付加量の高い項目を単純に足すことで各因子に相当する近似得点を簡単に求めることは、直行であれ斜交であれ、因子と項目の相関が十分に高ければできることです。しかし、その近似得点の使い方が簡単かつ意味のあるものでなければ、実務に供することができないと思うのです。TEGやBig Fiveがあれだけ広く使われているのも、直交尺度を提供しているからだと思います。実学・実務の観点から言えば、直行のほうがいいような気がしています。実際、日経などのメディアではいまでもバリマックス回転が主流のようです。 このあたり、どう考えたらいいかアイディアのある方お教えください。どうぞよろしくお願いします。