nn_121126 の回答履歴

全2件中1~2件表示
  • 複素積分の問題

    f(z)を|z|<2で正則な関数とする。 このとき、 1/(2πi)∫[|z|=1]Re(f(z))/(z-a)dz を求めよ。(但し、|a|≠1,Re(f(z))はf(z)の実部,∫[|z|=1]dzは単位円に沿って積分するという意味) Re(f(z))=1/2(f(z)+f(z)~)とコーシーの積分公式を使うような気がするの ですが上手く求められませんでした。どなたかご解説お願いします。

  • 複素積分の問題

    f(z)を|z|<2で正則な関数とする。 このとき、 1/(2πi)∫[|z|=1]Re(f(z))/(z-a)dz を求めよ。(但し、|a|≠1,Re(f(z))はf(z)の実部,∫[|z|=1]dzは単位円に沿って積分するという意味) Re(f(z))=1/2(f(z)+f(z)~)とコーシーの積分公式を使うような気がするの ですが上手く求められませんでした。どなたかご解説お願いします。