gaussisperのプロフィール
- ベストアンサー数
- 1
- ベストアンサー率
- 50%
- お礼率
- 0%
- 登録日2009/05/05
- 素数の分類に関して
[類題] 「8n + 3 型の素数は無限に多くある事を示せ。」の略解。 *)文中のp^は複素数pの共役な複素数です。例えば、p=1+iの場合、p^は1-iのことです。 また、a2 はaの二乗という意味です。 証明)もし 8n + 3 型の素数が有限個であったとし、その全体を p1, p2, ... , pn とする。 P = p1p2 ... pn + √2 i と置いて、これを単項イデアル整域 Z[√2 i ] で素元分解する。 N (P) = PP^ は奇数であるから(正確には、 N (P) ≡ 3 ( mod. 8 ) 、) P の有理整数の素因数は奇数である。この因子は PP^ の中では偶数冪で出てくるから、その部分は 8n + 1 型である。又、 P は有理整数に同伴でないから、a + b √2 i 型 (b ≠ 0, 有理整数の素因子と同伴でない物) の因子がある。PP^ は奇数であるから a は奇数である。更に、この a + b √2 i 型の因子の b が偶数であるとすると、 N( a + b √2 i ) = a2 + 2b2 ≡ 1 (mod. 8) であるから、 この形の b が全て偶数であるとすると PP^ ≡ 3 (mod. 8) と矛盾する。従って b が奇数の物 a + b √2 i が有るが、素元分解の一意性により、N( a + b √2 i ) = a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8) となり有限性に矛盾。故にこの型の素数は無限個。 この証明における、この因子は PP^ の中では偶数冪で出てくるから、その部分は 8n + 1 型である。がなぜ言えるのかという点と 最後の一文である 素元分解の一意性により、N( a + b √2 i ) = a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8) となり有限性に矛盾。 における a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8)がなぜ分かるのかが理解できません。 よろしくお願いします。
- 素数の分類に関して
[類題] 「8n + 3 型の素数は無限に多くある事を示せ。」の略解。 *)文中のp^は複素数pの共役な複素数です。例えば、p=1+iの場合、p^は1-iのことです。 また、a2 はaの二乗という意味です。 証明)もし 8n + 3 型の素数が有限個であったとし、その全体を p1, p2, ... , pn とする。 P = p1p2 ... pn + √2 i と置いて、これを単項イデアル整域 Z[√2 i ] で素元分解する。 N (P) = PP^ は奇数であるから(正確には、 N (P) ≡ 3 ( mod. 8 ) 、) P の有理整数の素因数は奇数である。この因子は PP^ の中では偶数冪で出てくるから、その部分は 8n + 1 型である。又、 P は有理整数に同伴でないから、a + b √2 i 型 (b ≠ 0, 有理整数の素因子と同伴でない物) の因子がある。PP^ は奇数であるから a は奇数である。更に、この a + b √2 i 型の因子の b が偶数であるとすると、 N( a + b √2 i ) = a2 + 2b2 ≡ 1 (mod. 8) であるから、 この形の b が全て偶数であるとすると PP^ ≡ 3 (mod. 8) と矛盾する。従って b が奇数の物 a + b √2 i が有るが、素元分解の一意性により、N( a + b √2 i ) = a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8) となり有限性に矛盾。故にこの型の素数は無限個。 この証明における、この因子は PP^ の中では偶数冪で出てくるから、その部分は 8n + 1 型である。がなぜ言えるのかという点と 最後の一文である 素元分解の一意性により、N( a + b √2 i ) = a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8) となり有限性に矛盾。 における a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8)がなぜ分かるのかが理解できません。 よろしくお願いします。
- 病室で聞くクラッシク
友人が急性白血病のため入院しました。状態はあまりよくありません。彼女は大学のオーケストラに所属しておりバイオリン担当でした。 お見舞いにクラシックのCDを持っていこうと思っています。 最初はオペラ歌手のホセ・カレーラスの声楽のCDにしようと思っていました。カレーラスも白血病から回復した経歴があります。 ただよく考えてみると病室で聞くのにはあんまりそぐわないし、声には好き嫌いもありますもんね。 病室で聞くのに良いクラシックのCDを探しています。穏やかで軽快なほうがいいのかなーと考えています。教えていただけたら本当にうれしいです。
- 締切済み
- クラシック・オーケストラ
- 2320932
- 回答数9