yamori2009のプロフィール

@yamori2009 yamori2009
ありがとう数20
質問数2
回答数36
ベストアンサー数
11
ベストアンサー率
61%
お礼率
25%

  • 登録日2009/04/27
  • 空間ベクトルの問題がわかりません

    「1辺の長さが1の正四面体OABCがある。 辺OBの中点をM,辺OCを1:2に内分する点をNとし、点Oから平面AMNへ垂線を引き、平面AMNと垂線の交点をH、直線OHと平面ABCとの交点をKとする。 OAをaベクトル、OBをbベクトル、OCをcベクトルとして、OHベクトル、OKベクトルをそれぞれaベクトル、bベクトル、cベクトルを用いて表せ。」 という問題で、 OHベクトルは-1/3aベクトル+1/3bベクトル+cベクトルと計算してみましたが、 OKベクトルで「平面ABCとの交点をkとする」 条件を見つけられません。 どう立式したら良いのでしょうか? またOHベクトルも正しいがどうかわかりません。 よろしくお願いします。

  • 部分集合

    A⊆Bが成り立っている A={1、5、7}B={x|0<x<10、xは奇数} これは、A⊂BであってA⊆(⊂=)B成り立たない気がします。よくわかりません。B={1、3、5、7、9}だから、9∈Aではないから、ただの真部分集合じゃないでしょうか?

    • noname#160566
    • 回答数4
  • 指数分布・条件付確率

    「Xの分布=Yの分布=Exp(1)のとき、P(Y≧3X)を求めよ」 という問題についてですが、まず Xの確率密度関数:f(x)=e^(-x) (x>0) Yの確率密度関数:g(y)=e^(-y) (y>0) と表せます。 解答では、 P(Y≧3X) =∫[-∞~∞]P(Y≧3X|X=t)*f(t)dt =∫[0~∞]P(Y≧3X|X=t)*e^(-t)dt  (★) =∫[0~∞]P(Y≧3t)*e^(-t)dt    (▲) =∫[0~∞]{∫[3t~∞]g(u)du}*e^(-t)dt =∫[0~∞]{∫[3t~∞]e^(-u)du}*e^(-t)dt =1/4 となっています。 疑問なのは★→▲への計算なのですが、 条件付確率の条件が外れるということは、XとYが独立だということになります。 しかし、問題文の1行からはXとYが独立とは、私には読み取れないのです。 私が読み取れないだけで、独立という設定なのでしょうか? それとも、指数分布の性質により独立と判断できるのでしょうか?

    • harohi
    • 回答数3
  • ベクトルについて

    ベクトルについての問題です。 よろしくお願いします。

  • limの問題

    lim(1+1/n2)n乗 (n→∞)の計算過程と答えを教えていただきたいです。