ordinalのプロフィール
@ordinal ordinal
ありがとう数3
質問数0
回答数5
- ベストアンサー数
- 2
- ベストアンサー率
- 66%
- お礼率
- 0%
- 登録日2008/07/13
- 正多面体の頂点の座標
二次元の正多角形の頂点の座標は、複素平面を考えたときに 1 の n 乗根が単位円上の頂点として求まるわけですが、それと同じようなやり方で三次元の正多面体の頂点の (単位球上の) 座標を求める方法というのはあるでしょうか? 同じようなやり方でというか、比較的単純にパラメータ化された数式で表すことができるのでしょうか?
- ZFC集合論(公理的集合論)について.
ZFC集合論の問題をやっています。 集合論はこれまでにまったく習っておらず参考書などで調べながら自分なりに考えてみても混乱するばかりでわかりませんでした. 集合論て難しいですね(^^;) 問題なのですが, 「A={x|#x=1}はZFC集合論の意味での集合になるかどうか調べよ」です. 初心者の私でもわかるような解説がありましたら教えてください.
- ベストアンサー
- 数学・算数
- imashime00
- 回答数5
- ZFC集合論(公理的集合論)について.
ZFC集合論の問題をやっています。 集合論はこれまでにまったく習っておらず参考書などで調べながら自分なりに考えてみても混乱するばかりでわかりませんでした. 集合論て難しいですね(^^;) 問題なのですが, 「A={x|#x=1}はZFC集合論の意味での集合になるかどうか調べよ」です. 初心者の私でもわかるような解説がありましたら教えてください.
- ベストアンサー
- 数学・算数
- imashime00
- 回答数5
- ZFC集合論(公理的集合論)について.
ZFC集合論の問題をやっています。 集合論はこれまでにまったく習っておらず参考書などで調べながら自分なりに考えてみても混乱するばかりでわかりませんでした. 集合論て難しいですね(^^;) 問題なのですが, 「A={x|#x=1}はZFC集合論の意味での集合になるかどうか調べよ」です. 初心者の私でもわかるような解説がありましたら教えてください.
- ベストアンサー
- 数学・算数
- imashime00
- 回答数5