この英文の和訳をお願いします。
The numbers of collision orbits found in the present calculations are shown in Table 4 for the representative sets of (e,i). From these numbers we can expect the magnitude of statistical error in the evaluation of <P(e,i)> to be a few percent for small e, i and within 10% for large e, i for r_p=0.005 are shown in Table 5, together with those of the two-dimensional case. Interpolating these values, we have obtained the contour of <P(e,i)> and R(e,i) on the e-I plane. They are shown in Figs. 14 and 15. From Fig. 15 we can read out the general properties of the collisional rate in the three-dimensional case: (i) <P(e,i)> is enhanced over <P(e,i)>_2B except for small e and i, (ii) <P(e,i)> reduces to <P(e,i)>_2B for (e^2+i^2)^(1/2)≧4, and (iii) there are two peaks in R(e,i) near regions where e≒1 (i<1) and where i≒3 (e<0.1): the peak value is at most as large as 5.
In the vicinity of small v(=(e^2+i^2)^(1/2)) and i, R(e,i) rapidly reduces to zero. This is due to a singularity of <P(e,i)>_2B at v=0 and i=0 in the ordinary expression given by Eq. (29) and hence unphysical; the behavior of collisional rate in the vicinity of small v and i will be discussed in detail later. Thus, we are able to assert, more strongly, the property (i) mentioned in the last paragraph: that is, solar gravity always enhances the collisional rate over that of the two-body approximation.
One of the remarkable features of R(e,i) found in Fig. 15 is the property (ii). That is, the collisional rate between Keplerian particles is well described by the two-body approximation, for (e^2+i^2)^(1/2)≧4. This is corresponding to the two-dimensional result that R(e,0)≒1 for e≧4.
よろしくお願いします。
お礼
こちらこそお心のこもった訳文をお寄せくださいまして、毎回大変ありがたく感謝の言葉も見つかりません。 英文だけですとなかなか理解まで至らないので、和訳していただくことで理解の助けになっています。 訳だけでなく、補足説明等ご配慮を賜り心からお礼申しあげます。