この英文の和訳をお願いします。
In Fig.13, we compare our results with those of Nishiida (1983) and Wetherill and Cox (1985). Nishida studied the collision probability in the two-dimensional problem for the two cases: e=0 and 4. For the case of e=0, his result (renormalized so as to coincide with our present definition) agrees accurately with ours. But for e=4, his collisional rate is about 1.5 times as large as ours; it seems that the discrepancy comes from the fact that he did not try to compute a sufficient number of orbits for e=4, thus introducing a relatively large statistical error. The results of Wetherill and Cox are summarized in terms of v/v_e where v is the relative velocity at infinity and v_e the escape velocity from the protoplanet, while our results are in terms of e and i. Therefore we cannot compare our results exactly with theirs. If we adopt Eq. (2) as the relative velocity, we have (of course, i=0 in this case)
(e^2+i^2)^(1/2)≒34(ρ/3gcm^-3)^(1/6)(a_0*/1AU)^(1/2)(v/v_e). (34)
According to Eq. (34), their results are rediscribed in Fig.13. From this figure it follows that their results almost coincide with ours within a statistical uncertainty of their evaluation.
7. The collisional rate for the three-dimensional case
Now, we take up a general case where i≠0. In this case, we selected 67 sets of (e,i), covering regions of 0.01≦i≦4 and 0≦e≦4 in the e-i diagram, and calculated a number of orbits with various b, τ,and ω for each set of (e,i). We evaluated R(e,i) for r_p=0.001 and 0.005 (for r_p=0.0002 we have not obtained a sufficient number of collision orbits), and found again its weak dependence on r_p (except for singular points, e.g., (e,i)=(0,3.0)) for such values of r_p. Hence almost all results of calculations will be presented for r_p=0.005 (i.e., at the Earth orbit) here.
Fig.13. Comparison of the two-dimensional enhancement factor R(e,0) with those of Nishida (1983) and those of Wetherill and Cox (1985).Their results are renormalized so as to coincide with our definition of R(e,0).
長文ですが、よろしくお願いします。
お礼
ありがとうございました!! 英文の意味がわかりました(^-^)