- 締切済み
微分可能なら連続?
微分可能→連続。 次の二つの命題について正しければ証明し、 そうでなければ反例をあげよ 1 関数f(x)が開区間(a,b)で微分可能ならば、f(x)は開区間(a,b)で連続である 2 関数f(x)が開区間(a,b)で微分可能ならば、その導関数f'(x)は開区間(a,b)で連続である。 答えは1は正しく、 2は間違いで反例はf(x)=x^2sin(1/x)を使ってみよとの事でした。 すみません1,2の証明をお願いできませんか? 詳しくおねがいします
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- アウストラロ ピテクス(@ngkdddjkk)
- ベストアンサー率21% (283/1290)
回答No.1
http://okwave.jp/qa/q7518759.html この辺の質問と回答を読んだら、理解が深まるかも。