• 締切済み

数列

bは正の実数であり、数列a1,a2,a3,……,an,……はan+1=(an)^2-2ban(n=1,2,3……)…(1)を満たす。 この数列の変化をみるために2つの関数y=x,y=x^2-2bxを考えそれらのグラフをそれぞれ、C1,C2とする。 (1)C1とC2の交点のx座標は0とアb+イである。 したがって、a1=0あるいはa1=アb+イのとき、すべてのnについてan+1=anとなる。 また0<an<an+1(n=a,2,3,……)が成り立つための必要十分条件は、a1>ウb+エである。 (2)等式(1)から、すべての実数nについて an+2=(an)^4-オb(an)^3+(カb^2-キb)x^2+(4b^2)xの四つの異なる解はa,bを用いて x=0,b,2b+1,b-ク と表される。したがって、初項a1が(√ケ-コ)/2または(√サ-シ)/2であるとき、anはnに応じて二つの値(√ケ-コ)/2と(√サ-シ)/2を交互にとる。 アとイはわかったのですがウからわかりません。 回答お願いします。

みんなの回答

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

ウとエについては C1, C2 のグラフを実際に書けば分かるような気がする. (2) はたぶん問題がおかしい. x の 2次方程式に, なぜ 4つの異なる解が存在するのか.

関連するQ&A