- 締切済み
数学の問題です。
数学の問題です。 自分的にとても難しく、全く分かりませんでした。 R^2 の区間をi=[a,b)×[c,d)={(x,y)∈R^2 |a≤x<bかつc≤y<d}で定める。 a≥b又はc≥dのときはi=∅であると約束する。 b,dは∞となる。a,cは-∞となるが、[a,b)=(-∞,b),[c,d)=(-∞,d)と解釈する。 I_(R^2 )≔def {i│iはR^2 の区間} F_(R^2 )≔{f⊂R^2 |(∃_1,∃_2,…∃i_r∈F_(R^2 ) )[f=i_1⨆i_2⨆…⨆i_r ]} 上記から、∅∈I_(R^2 ),∅∈F_(R^2 ) である。 問3 (∀_E,∀_f∈F_(R^2 ) )[E∩f∈F_(R^2 )] を示してください。 問4 (∀_E∈F_(R^2 ) )[E^C∈F_(R^2 )] を示してください。 問5 (∀_E,∀_f∈F_(R^2 ) )[E∩f∈∅⇒E∪f=E⨆f∈F_(R^2 )] を示してください。 問6 (∀_E,∀_f∈F_(R^2 ) )[E∪f∈F_(R^2 )] を証明してください。
- みんなの回答 (1)
- 専門家の回答
みんなの回答
noname#152422
回答No.1
こっちも誤植をチェックしたほうがいいです。
お礼
こちらの質問にも指摘をして頂けるとは、ありがとうございます! 問題の方は、自己解決する事が出来ました。 お騒がせして、申し訳ありませんでした><