- ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:N次元ベクトルの回転)
N次元ベクトルの回転方法と条件
このQ&Aのポイント
- N次元ベクトルの回転方法を解説します。
- m本の単位ベクトルと新しい単位ベクトルxの関係を指定する条件について説明します。
- 回転行列やベクトルの求め方について詳しく解説します。
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
>m + 1 < N >くらいの条件があれば解は必ず存在すると思います。 内積の値の設定によっては、それだけでは必ず解が存在するとは言えません。 極端に言えば、v_1=v_2でv_1との内積とv_2との内積が違っていれば当然解が存在しません。 平行でなくても、4次元空間で、 v_1=(1,0,0,0) v_2=(0,1,0,0) (x・v_1)=a (x・v_2)=b としたとき、a^2+b^2>1であれば、このようなxは存在しません。 解が存在した場合その求め方は、単純にN元線形連立方程式を解いてそれを単位ベクトルにするだけです。
お礼
本当ですね。 まったく根本が間違っていました。 根っこから考え直します ありがとうございました