• 締切済み

自然対数の底の関数

答えは あ5、い8、う6、え7、お5、か8、き7、く6 ア8、イ1、ウ2、エ8、オ1、カ6、キ1、ク2、ケ8 ですが、解き方が分かりません。

みんなの回答

  • muturajcp
  • ベストアンサー率78% (508/650)
回答No.1

x^2-2x+1=(x-1)^2 e^x+e^{-x}+2=(e^{x/2}+e^{-x/2})^2 x^2+2x+1=(x+1)^2 e^x+e^{-x}-2=(e^{x/2}-e^{-x/2})^2 ↓ f(x)=√{(x^2-2x+1)(e^x+e^{-x}+2)}+√{(x^2+2x+1)(e^x+e^{-x}-2)} =√{(x-1)^2(e^{x/2}+e^{-x/2})^2}+√{(x+1)^2(e^{x/2}-e^{-x/2})^2} =|x-1|(e^{x/2}+e^{-x/2})+|x+1||e^{x/2}-e^{-x/2}| x<-1 ↓ f(x) =(1-x)(e^{x/2}+e^{-x/2})+(x+1)(e^{x/2}-e^{-x/2}) =2e^{x/2}-2xe^{-x/2} -1≦x<0 ↓ f(x) =(1-x)(e^{x/2}+e^{-x/2})+(x+1)(e^{-x/2}-e^{x/2}) =2e^{-x/2}-2xe^{x/2} 0≦x<1 ↓ f(x) =(1-x)(e^{x/2}+e^{-x/2})+(x+1)(e^{x/2}-e^{-x/2}) =2e^{x/2}-2xe^{-x/2} 1≦x ↓ f(x) =(x-1)(e^{x/2}+e^{-x/2})+(x+1)(e^{x/2}-e^{-x/2}) =2xe^{x/2}-2e^{-x/2} ∫e^{x/2}dx=2e^{x/2} ∫e^{-x/2}dx=-2e^{-x/2} ∫xe^{x/2}dx=2xe^{-x/2}-2∫e^{x/2}dx=2xe^{x/2}-4e^{x/2}=2(x-2)e^{x/2} ∫xe^{-x/2}dx=-2xe^{-x/2}+2∫e^{-x/2}dx=-2xe^{-x/2}-4e^{-x/2}=-2(x+2)e^{-x/2} ∫_{-1~1}f(x)dx =∫_{-1~0}(2e^{-x/2}-2xe^{x/2})dx+∫_{0~1}(2e^{x/2}-2xe^{-x/2})dx =2∫_{-1~0}e^{-x/2}dx-2∫_{-1~0}xe^{x/2}dx+2∫_{0~1}e^{x/2}dx-2∫_{0~1}xe^{-x/2}dx =-4[e^{-x/2}]_{-1~0}-4[(x-2)e^{x/2}]_{-1~0}+4[e^{x/2}]_{0~1}+4[(x+2)e^{-x/2}]_{0~1} =-4+4e^{1/2}+8-4e^{-1/2}-8e^{-1/2}+4e^{1/2}-4+4e^{-1/2}+8e^{-1/2}-8 =8e^{1/2}-8 ∫_{-2~2}f(x)dx =∫_{-2~-1}f(x)dx+∫_{-1~1}f(x)dx+∫_{1~2}f(x)dx =∫_{-2~-1}(2e^{x/2}-2xe^{-x/2})dx+8e^{1/2}-8+∫_{1~2}(2xe^{x/2}-2e^{-x/2})dx =4[e^{x/2}]_{-2~-1}+4[(x+2)e^{-x/2}]_{-2~-1}+8e^{1/2}-8+4[(x-2)e^{x/2}]_{1~2}+4[e^{-x/2}]_{1~2} =4[e^{-1/2}-e^{-1}]+4e^{1/2}+8e^{1/2}-8+4e^{1/2}+4[e^{-1}-e^{-1/2}] =16e^{1/2}-8

関連するQ&A