- 締切済み
実空間と逆空間のイメージとつながり
X線回折や電子線回折などで用いる逆空間についての質問です。X線回折などの質問はすでに出ているようなのですが、私の聞きたいところはどうも無いようなので質問させていただきます。 逆空間の点は実空間の面に対応しているなどと本に書いてありますので知識としては知っていますが、実空間からどのように考え(どのように変換して)逆空間に対応しているのか間のイメージがはっきりとつかめません。なんとなくは分かるのですが。 実空間で長いものは逆空間では短くなる。その逆もそうですよね。逆空間で点になるのは球面はが広がった時に干渉して強め合ったところだけ出てきたってことですよね。 しかし、回折点がどの格子面に対応するのかがよく分かりません。(結晶の向きが分かっているってことなら、いいのですが。どこから面を透過してきた波なのか分からないのに基準はどこにとるのでしょう?)みなさんはどのようにはっきりとしたイメージが持てるようになりましたか、コツのようなものをお教えください。 ちなみに関連したことで、フーリエ変換というのも時間→(角)周波数ですから、単位を見て逆数になっているのでデルタ関数はいろんな周波数を含んでいるなぁとはなんとなく式を見て分かるのですが、こちらも(変換の過程の)イメージがはっきりしないのです。 どうもこれらの知識が繋がってきません。 これらのイメージを表示できるフリーソフトなどがあれば教えて下さい。 よろしくお願いします。
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- KENZOU
- ベストアンサー率54% (241/444)
逆空間は逆格子空間のことですね。例の結晶格子の基本ベクトルをa,b,cとし、逆格子ベクトルをa*,b*,c*とすると a*=(b×c)/V、b*=(c×a)/V、c*=(a×b)/V Vは結晶の単位胞の体積でV=a・(b×c)=・・・ 一般に逆格子空間の原点から(h,k,l)なる逆格子点に至るベクトルをP(hkl)とするとP(hkl)=ha*+kb*+lc*は実空間の格子面(h,k,l)に垂直で大きさ|P|は(h,k,l)面の面間隔d(hkl)の逆数に等しいという性質を持っていますね。 以上、前書きが長くなりましたが、ご質問の >実空間からどのように考え(どのように変換して)逆空 >間に対応しているのか間のイメージがはっきりとつかめ >ません。 については結論から言って上に書いた関係をはがき程度のメモに絵を描いてポケットに忍ばせておき、時折その絵を眺めつつイメージをたくましくしていく以外にないのではないでしょうか。フーリエ変換の関係も同じです。 このあたりのイメージを強めていくのに下記URLが参考になると思います。そこには「マイクロ波による散乱実験を通して逆格子空間を体感する」とあります。がんばってください。 (P.S) フリーソフトは知りませんが、バンド理論というキーワードで検索すればヒットするかも知れません。
お礼
絵を描いてやってみようと思います。 回答ありがとうございます。